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Abstract 

In this research, some estimate models of occupant’s injury criteria at a frontal 
crash were constructed by using two machine learning methods, Gaussian 
Process and Kriging from sampling data sets computed by multi-body dynamics 
simulation. Then we evaluated the performance and their properties of the 
learning and the sampling methods. Although substituting virtual evaluation by 
computational simulation for physical crash tests has brought significant 
reduction of the time and the cost for design and evaluation of the occupant 
restraint system, the virtual evaluation of the crash has a problem to be solved. 
That involves huge computation time caused by the combinatorial explosion of 
various factors such as the crash condition, the design variables of the restraint 
system and the posture of the occupant. Since complex interaction among the 
various factors affect response of the injury criteria, repetitious computation and 
evaluation are required. Therefore, a quantitative and qualitative virtual 
evaluation method reducing the number of times for computation is demanded. 
This research investigated the applicability of machine learning methods as a 
means of estimating the highly nonlinear and multimodal response. Machine 
learning is an artificial intelligence technology which acquires rules behind 
observed data set automatically. Generally, efficiency is opposed to precision 
and complexity, that is, improving the precision of the estimate requires high 
density sampling in a design variable space. Furthermore, estimating complex 
input-output response requires various combinations of the design variables. So, 
in order to find an efficient sampling policy, we investigated the trade-off 
relationship among “the sampling method and the number of samplings” and 
“the precision of the estimate response and the complexity of the response”. 
Keywords: occupant safety, injury criteria, CAE, machine learning, estimate 
modelling. 
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1 Introduction 

Since physical prototyping and testing at design and development of a vehicle 
consume huge time and cost, virtual prototyping and testing by using numerical 
simulation are employed at early stage of the design. At the virtual prototyping 
and testing, many draft designs’ evaluation indexes, such as safety, stress and 
weight, are calculated and then designers examine the draft designs while 
referring trade-off and restraint of those indexes. 
     At an occupant restraint system design, analytical model of the occupant’s 
behaviour is constructed by using CAE such as finite element analysis and multi-
body dynamics, then impact responses at various crash conditions and various 
evaluation indexes based on safety regulations are calculated. Substituting such 
virtual evaluation by using CAE for physical crash testing has brought 
significant reduction of the time and the cost for design and evaluation of the 
occupant restraint system nowadays [1]. However the virtual evaluation of the 
crash has a problem to be solved. That is huge computation time which caused 
by combinatorial explosion of various factors such as crash condition, design 
variables of a restraint system and a posture of an occupant. Since complex 
interaction among the various factors affect response of injury criteria, 
repetitious computation and evaluation are required. Therefore quantitative and 
qualitative virtual evaluation method with reducing the number of times for 
computation is demanded. 
     One natural idea is to estimate by extrapolation and interpolation using 
polynomial approximation as a means of reducing repetitious computation. 
However, the idea is not appropriate, since it is difficult to represent responses of 
a crash by using polynomial functions, because the responses are highly 
nonlinear and multi-modal. So, this research investigates the applicability of 
machine learning methods as a means of estimating the highly nonlinear and 
multi-modal responses. Machine learning is an artificial intelligence technology 
which acquires hidden rules behind observed data set automatically. Machine 
learning is widely used in various areas such as pattern recognition and 
bioinformatics nowadays. 
     In this research, we construct an analytical model of occupant behaviour at a 
frontal crash by using multi-body dynamics simulation. Then estimate models 
are constructed by means of two machine learning methods, Gaussian Process 
and Anisotropic Kriging from input-output data set of the analytical model. The 
input parameters are control parameters of the restraint system and the output 
parameters are the injury criteria, head injury criterion, chest resultant 
acceleration and femur load. 
     Generally, efficiency of estimate modelling is opposed to precision and 
complexity. That means improving the precision of the estimate modelling 
requires high density sampling of data set in design variable space. Furthermore 
estimating complex input-output response requires various combinations of the 
design variables. So, in order to find efficient sampling policy, we investigate 
trade-off relationship among “the sampling method and the number of 
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samplings” and “the precision of the estimate response and the complexity of the 
response”. 

2 Estimate modelling of frontal crash 

In this research, injury criteria of an occupant at a frontal crash are estimated by 
using a two machine learning method, Gaussian Process and Anisotropic 
Kriging. Input-output data set for estimate modelling is called training data set. 
The training data set is obtained by an occupant behaviour model of multi-body 
dynamics. The training data set is composed of control parameters of the 
restraint system as the input and injury criteria as the output. 

2.1 Machine learning 

Machine Learning is an artificial intelligence technology which acquires hidden 
rules behind observed data set automatically. This research employs two 
machine learning methods, Gaussian Process and Anisotropic Kriging which are 
suitable for estimating nonlinear or multi-modal responses. 
     Gaussian Process (GP) is a Bayesian approach, based upon the expression of 
knowledge in terms of probability distribution [2]. This method is a powerful 
regression model specified by parameterized mean and covariance functions, and 
suitable for estimating non polynomial responses. 
     Kriging is also a Bayesian approach widely used in geostatistics, suitable for 
estimating nonlinear responses [3, 4]. The Kriging behaviour is controlled by a 
covariance function, called a variogram, which ruled how varies the correlation 
between the values of the function at different points. This research employs 
Anisotropic Kriging (AKR) which is a refined version of the Kriging method [5]. 
This method controls the relative importance among input variables. 

2.2 CAE modelling via multi-body dynamics 

An occupant’s behaviour model of a full-frontal crash testing shown in Figure 1 
is constructed by using the multi-body dynamics tool, MADYMO. The model is 
composed of a Hybrid-III dummy, surrounding equipments such as a seat and a 
steering wheel, and restraint equipments such as an airbag and a seatbelt. The 
model simulates the occupant’s behaviour at the crash for 0.12 sec. 
     The behaviour of the model is controlled by 6 design variables regarding an 
airbag, a seatbelt and a knee bolster which strongly affect safety indexes. The 
design variables are shown in Table 1. A gas generant of the airbag inflator is 
ignited at x1 [sec.] which is the time after collision detection (AB_TTF), and then 
the gas inflates the airbag. The inflation speed is controlled by x2 which is a mass 
flow rate of the generated gas (AB_MFR). Normally, it takes 0.04 to 0.05 sec. 
for finishing the inflation. A part of the kinetic energy of an occupant is 
consumed by discharging the gas of the airbag from a vent hall after the collision 
of the head and the airbag. Discharging of the gas is controlled by x3 which is a 
design variable of the size of the vent hall (AB_VHF). 
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     The model of the seatbelt contains a pretensioner system and a load limit 
system. The pretensioner system which restrains an occupant to a seat by 
drawing a seatbelt in improves an effect of a seatbelt at a crash. The pretensioner 
system works at x4 [sec.] which is the time after collision detection (SB_TTF). 
The load limit system cushions an impact of a chest by keeping a certain 
prescribed load while letting out a seatbelt. The variable x5 [N] is the prescribed 
load (SB_LL). 
     The knee bolster receives a load from an occupant’s knee at a crash. The 
variable x6 is the knee bolster stiffness factor which controls the stiffness of the 
knee bolster (KB_SF). 

 
 

 

Figure 1: Frontal crash model via multi-body dynamics simulation. 

Table 1:  List of input design variables. 

Variable Name Lower Limit Upper Limit 
Airbag: Time to Fire [sec.] 

/ AB_TTF x1 0.015 0.035 

Mass Flow Rate 
/ AB_MFR x2 0.5 2.0 

Vent Hole Factor 
/ AB_VHF x3 0.5 2.0 

Seatbelt: Time to Fire [sec.] 
/ SB_TTF x4 0.01 0.03 

Load Limit [N] 
/ SB_LL x5 2000 6000 

Knee Bolster: Stiffness Factor 
/ KB_SF x6 0.5 2.0 
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2.3 Criteria of occupant behaviour 

The output parameters are head injury criterion, chest resultant acceleration and 
femur load which are safety indexes based on the Japan NCAP. The head injury 
criterion (HIC), f1 which is an index of head injury risk is calculated by using the 
following eqn (1). 
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where a(t) is a temporal waveform of a head acceleration which is measured by 
an accelerometer mounted on centre of mass of a dummy’s head. 
     The chest resultant acceleration (ChestG) is measured by an accelerometer 
mounted on centre of mass of a dummy’s chest. The femur load (FL) is 
measured by load cells mounted on the dummy’s right and left femurs. 
     In this research, we try to estimate the HIC, the ChestG and the right and left 
FLs (FL_R and FL_L) as criteria of an occupant’s behaviour. 

3 Numerical experiment 

This section describes construction of estimate model, and then describes the 
result of evaluation of its accuracy. Input-output data set for estimate modelling 
is called training data set and input-output data set for evaluation of the model is 
called testing data set. 

3.1 Estimate modelling via machine learning 

Estimate models were constructed by using Gaussian Process (GP) and 
Anisotropic Kriging (AKR). Number of sampling of the training data set was set 
for 100, 200, 300 and 400 points respectively. In order to avoid extrapolation, 
firstly the sampling was obtained from the corner of the design variable space – 
in other words, combination of upper and lower limit of each variable, that is 26 
points in case of 6 variables. And then the rest of the sampling was obtained 
from the inside of the design variable space randomly. 

3.2 Evaluation method 

The testing data set was obtained from the inside of the design variable space at 
random besides the training data set. Number of the sampling was 100 points. 
Accuracy of the estimate model was evaluated by using mean magnitude of 
relative error, MMRE between actual value and estimated value of the training 
data and the testing data. E [%] of the MMRE was calculated by the following 
eqn (2). 
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where xi is a vector of an input parameters of each sample. f(xi) is an actual value 
and f^(xi) is an estimated value of the output. n is number of the sampling. 

3.3 Results and discussion 

The MMRE between the actual value and the estimate value of the training data 
set is shown in Table 2. Both GP and AKR estimated the output value precisely. 
The MMRE of estimate by GP was 7.06×10-12% to 1.99×10-5%, and that by 
AKR was 1.97×10-5% to 1.68% respectively. These results were sufficient 
precision. 
     The MMRE of the testing data set is shown in Table 3 and Figure 2. At the 
testing data set, the accuracy has improved when the number of training data 
increases as a general trend. The trend was remarkable at HIC of GP. The 
MMRE of HIC of GP was 6.21% to 18.09%, and that of AKR was 4.08% to 
6.35%. On the other hand, the accuracy of the estimate of the other criteria was 
sufficient precision. The reason is assumed that the nonlinearity of HIC is higher 
and its estimate is more difficult than the other criteria since HIC was calculated 
from a response of a collision between a head and an airbag. Therefore the 
improvement of the accuracy of HIC is important problem to precise 
approximate model. 
     The above results can be confirmed by visualizing the response of the input 
and the output; Figures 3 and 4 are shown as the example. Contour of the 
response of HIC and ChestG of AKR when the number of training data set was 
set for 400 is shown in Figures 3 and 4 respectively. 
     In Figure 3, each nine figures shows the response of HIC when two of six 
design variables, AB_TTF and SB_TTF were varied. Another two variables, 
AB_MFR and AB_VHF were fixed to 3 values, 0.5, 1.0 and 2.0 respectively. 
The rest two variables, SB_LL and KB_SF were fixed to 4000 and 1.0 
respectively since these variables affected to HIC little. For example, the upper 
right figure shows the response when the variables were fixed to AB_MFR: 2.0, 
AB_VHF: 2.0, SB_LL: 4000 and KB_SF: 1.0 respectively. As for Figure 4, it is 
similar that each figure shows the response of ChestG when AB_TTF and 
SB_TTF were varied. AB_MFR were fixed to 0.5, 1.0 and 2.0, and SB_LL were 
fixed to 2000, 4000 and 6000 respectively. AB_VHF and KB_SF were fixed to 
1.0 respectively since these variables affected to ChestG little. 
     These results show that the landscape of each response changes variously by 
combination of the design variables. The changing of the response of ChestG 
was relatively simple, while that of HIC was complex. This result means that the 
estimate of the response of HIC is more difficult than that of the other criteria. 
However, because the response in the area of AB_MFR from 1.0 to 2.0 is 
simple, we assume that the accuracy can be improved by the following method. 
Firstly, the design variable space is divided into several spaces and the estimate 
models of these divided spaces are constructed respectively. And then the whole 
estimate model is constructed by combining these models. That is our future 
subject. 
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Table 2:  MMRE of GP and AKR of training data set. 

Num. of training data 100 200 300 400 
GP: f1 / HIC 4.85×10-11 3.55×10-11 2.15×10-11 1.06×10-11 

f2 / ChestG 1.22×10-11 7.06×10-12 7.35×10-12 4.41×10-11 
f3 / FL_L 1.70×10-5 2.92×10-11 8.46×10-8 3.35×10-6 
f4 / FL_R 1.99×10-5 3.31×10-11 1.30×10-11 3.21×10-6 

AKR: f1 / HIC 4.95×10-1 1.12×100 1.97×10-5 1.68×100 
f2 / ChestG 1.00×100 1.12×100 1.12×100 1.09×100 
f3 / FL_L 5.01×10-1 3.94×10-1 5.61×10-1 8.00×10-1 
f4 / FL_R 5.07×10-1 4.80×10-1 6.25×10-1 7.92×10-1 

Table 3:  MMRE of GP and AKR of testing data set 

Num. of training data 100 200 300 400 
GP: f1 / HIC 18.1 8.56 6.21 6.77 

f2 / ChestG 2.30 1.87 1.35 2.56 
f3 / FL_L 3.33 2.89 3.07 3.13 
f4 / FL_R 3.07 2.55 2.78 2.35 

AKR: f1 / HIC 6.35 4.12 5.24 4.08 
f2 / ChestG 1.66 1.34 1.30 1.27 
f3 / FL_L 3.32 3.64 3.64 3.24 
f4 / FL_R 2.55 2.85 2.71 2.25 

 

 

Figure 2: MMRE of GP and AKR of testing data set. 
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Figure 3: Response of HIC by using AKR. 

 

 

Figure 4: Response of ChestG by using AKR. 
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4 Conclusion 

In this paper, two machine learning methods, Gaussian Process and Anisotropic 
Kriging were employed to construct an estimate model of injury criteria at a 
frontal crash. The accuracy of the estimate model was evaluated and the results 
were shown below. The chest resultant acceleration and the femur load were 
estimated precisely even if the number of sampling of the training data was the 
smallest 100. On the other hand, the head injury criteria required more sampling 
to precise estimation since the nonlinearity of the response was higher than the 
other criteria. The improvement of the accuracy of the head injury criteria is 
important problem to precise approximate model. Visualization of the landscape 
of the response has shown the above results clearly and also that has indicated an 
idea for improvement. 
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