
Performance improvements for calculations of
third party risk around airports

R. Aalmoes1, R. Erkamp2, Y. S. Cheung1, R. van Nieuwpoort2,3
1National Aerospace Laboratory NLR, The Netherlands
2VU University Amsterdam, The Netherlands
3Netherlands eScience Center, The Netherlands

Abstract

During the past two decades, NLR has been performing research for third party
risk around airports, and a calculation model and methodology for different types
of airports are developed. The NLR third party risk model is used to evaluate the
risk for people living and working around an airport. The design of new or
changed air routes and runway infrastructure at airports require that third party
risk studies are conducted to determine the impact for the airport surroundings.
Due to the increase of traffic, the availability of improved individual flight track
data, and the need for detailed calculations on a denser grid, the time needed for
a risk calculation has increased significantly. It becomes challenging when more
scenarios are involved and hence more risk calculations are needed in the
decision making with respect to airport development and land use planning.
 In this paper, we present the research of using parallel programming hardware
to improve the performance of the calculation model, and in particular the use of
graphics cards (GPUs) to carry out massive parallel operations. Because of
different phases in the calculations, and the relation between adjacent grid cells,
the translation of this model into a parallel implementation is not
straightforward. Results show that a calculation for Schiphol airport, based on
the traffic for a calendar year and a dense grid that took a week to complete in
the original implementation, will finish well within one hour in the improved
parallel implementation, with identical results. Other findings of the research
show that the dedicated focus on improved performance has also helped finding
and solving performance issues in the original model implementation.
Keywords: third party risk, performance optimization, airport, aerospace,
GPGPU, OpenCL.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 134, © 2013 WIT Press

doi:10.2495/SAFE130401

Safety and Security Engineering V 447

1 Introduction

The third party risk model is an analysis model for determining risk to third
parties, thus the risk to the population around airports. The model is developed
by National Aerospace Laboratory (NLR) of the Netherlands. The need for such
a model arose in the last decades as the amount of air traffic increased and
therewith the realisation of the population that they are exposed to risks because
of air traffic. Since the airspace around airports is the most crowded, and the
probability of an aircraft accident is the greatest in the take-off and landing phase
(see Figure 1), the population in the vicinity of airports is exposed to the greatest
risk. The increase in air traffic made the Ministry of Transport decide to have the
NLR model the risk to third parties around airports. The model is used for
multiple purposes, e.g. determining risk areas and evaluating development plans
of airports (Weijts [1]). By introducing this model the Dutch government was
aiming to implement their policy to increase the safety for individuals. In
general, its objective is that nobody will have to live at a location where the
individual risk is larger than 10−6. This value includes the risks of other risk
factors besides airports, such as the transport of hazardous substances (CBS [2]).

Figure 1: Percentage of fatal accidents by flight phase. Even though only 6%
of a flight is spent in landing or take-off phase, most fatal
accidents happen in these phases. (Source: Statistical Summary of
Commercial Jet Airplane Accidents, 1959–2008, Boeing.)

 In the last decades, the amount of air traffic has increased significantly. From
a modelling perspective, this leads to more movements that should be taken into
account. Also, an increase of study area may be required. Another development
is that more detailed individual flight track data has become available: logging of
individual radar tracks for each flight is more common and there is a demand to

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 134, © 2013 WIT Press

448 Safety and Security Engineering V

use this data to improve the accuracy of third party risk calculations. Finally, a
greater accuracy has been demanded by users of the model results, meaning that
calculations have to be done on a denser grid.
 Each of these issues causes the required time to do a risk calculation to
increase significantly. It becomes (even more) challenging when more scenarios
are involved and hence more risk calculations are needed in the decision making
with respect to airport development and land use planning. With the continuous
performance improvements of computer hardware, the argument that computers
are too slow for the requested improvements cannot keep ground any longer. We
therefore make use of a multi-disciplinary approach, also known as eScience.
There has been done work in the past to use graphics processors to speed up risk
model implementations [3, 4], but not yet for the air transport domain. New
model implementation methods should therefore be examined to make third
party risk modelling ready for the next decade.

2 The third party risk calculation model

The third party risk model has a certain set of input parameters, on which
internal processes operate to produce the requested output. The input parameters
of the third party risk model can be split into two groups: model parameters and
input data of a scenario. The model parameters are characteristics of the model
and are derived from past events. The input data of a scenario is the data which
characterizes the scenario for which the risk analysis should take place, like the
number of aircraft movements, the aircraft types that are involved, and the routes
they take. All this information will be used to calculate the risk for the scenario.
The area for which calculations are requested is called the study area. The default
study area for regional airports is 40 by 40 kilometres, with a cell width and cell
height of 25 metres. For small airports, a smaller study area may be sufficient.
For large airports, a larger study area may be needed. For example, for Schiphol
Airport a study area of 56 by 56 kilometres is used.
 The calculations that can be requested are Individual Risk (IR) and Societal
Risk (SR). The Individual Risk is defined as the probability per year that an
imaginary person permanently located on a fixed spot in the vicinity of an airport
dies as a direct consequence of an aircraft accident (Weijts et al. [1]). The result
of an IR calculation is a probability grid containing an IR value for each cell. The
characteristics of this grid are the same as those of the study area as specified by
the user. As an extra option, specific output can be requested. For example, one
may request to compute additional grids containing the risk caused per accident
type and per part of day (day and night). Requesting grids for specific subsets
will result in extra grids in addition to the overall grid. The Societal Risk is
defined as the probability per year that a group greater than N persons located in
the study area die as a direct consequence of a single aircraft accident (Weijts et
al. [1]). This paper focuses primarily on the individual risk. It is noteworthy that
the challenges for optimising Societal Risk calculation are similar to those found
for Individual Risk calculation.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 134, © 2013 WIT Press

Safety and Security Engineering V 449

Figure 2: Flow chart of the sub models (source: NLR).

 The IR and SR calculations require that the probability densities and the sizes
of the crash areas are calculated in advance. This data is calculated by a number
of sub models (see Figure 2): the Accident Probability Model (APM), the
Accident Location Model (ALM), and the Accident Consequence Model (ACM).
 The Accident Probability Model selects the accident rate (AR) of a certain
accident type based on a couple of parameters: the aircraft’s generation and
maximum take-off weight, whether the flight is a cargo flight, passenger flight or
a business jet, and whether the accident happens during take-off or landing. The
accident rate is the probability that a certain accident occurs.
 In the Accident Location Model, a probability density matrix is calculated for
each accident rate selected in the Accident Probability Model by using one or
more distribution functions. The probability density matrix is a grid with a
probability density value for each cell. The probability density in a cell gives the
probability that if an accident happens, the crash will occur in the cell. Each cell
has its own probability density since its distance to the flight path or the runway
threshold most likely differs. Selection of the right distribution function to use is
based on the aircraft’s maximum take-off weight, whether it is in take-off or
landing phase, and the type of accident. Furthermore, the distribution function
choice depends on whether the probability density matrix should be calculated
relative to the route or relative to the runway (Weijts et al. [1]).
 The Accident Consequence Model selects two parameters, i.e. crash area and
lethality. The size of the crash area is based on the aircraft’s maximum take-off
weight. The crash areas are modelled as circles with its centre point located in
the centre of a grid cell. Lethality is a constant and is dependent of the chosen
model (Weijts et al. [1]).

2.1 Individual risk calculation

Computing the total risk caused by an aircraft accident in a certain cell depends
on several factors. First, there is the probability that an accident actually occurs,

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 134, © 2013 WIT Press

450 Safety and Security Engineering V

also called the accident rate. Then, there is the probability that if the accident
happens, the crash will occur in this cell. Note that this is the value in the
probability density matrix. Two other factors are the size of the crash area and
the lethality in the cell. The lethality is the probability of a person dying as a
consequence of an aircraft accident when present in the crash area. The product
of these four factors gives the total risk for a certain cell for a given accident type
and movement (Weijts et al. [1]).
 The risk calculated for one event applies for the complete crash area. Only
when the crash area is entirely within the cell, the calculated risk is added to the
cell’s risk. If this is not the case, it is distributed over the cells within the crash
area accordingly. Thus, for each cell (partially) covered by the crash area, the
percentage of the crash area in that cell should be computed. Since the crash area
is always modelled as a circle and the centre of that circle is always the centre of
a cell, the same distribution can be applied to multiple cells. Therefore, for each
crash area size, a template is computed containing the indices of the cells in the
crash area, relative to the centre cell of the crash area, and the corresponding
percentages (Weijts et al. [1]). See Figure 3 for an example crash area, its
derived template, and the application of that template to the crash area in a grid.
The total amount of templates that needs to be computed and stored is equal to
the number of different crash area sizes. Computing a template only concerns the
first quadrant of the crash area, because the values in the other quadrants are
equal to the first only mirrored vertically, horizontally or diagonally. When, for
every cell, all the risks are calculated and distributed around the involved cells,
for each accident type, and for each movement, the Individual Risk calculation is
finished.

Figure 3: Derivation of a template from a crash area (blue circle), and
application of that template to a grid.

3 The case for GPGPU and OpenCL

The Third Party risk model has been implemented in the past in a traditional,
sequential program, suitable for a typical PC or workstation with a high
performance Central Processing Unit (CPU), also known as the processor. But
since the last decade, two hardware developments (Palacios and Triska [5]) have
taken place that requires a re-evaluation for high-performance model
implementations:

1. The computational power of graphics cards becomes not only useful for
video games, but also for applications suitable for high parallelisation.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 134, © 2013 WIT Press

Safety and Security Engineering V 451

The use of graphics processors for this purpose is also called General-
purpose computing on graphics processing units (GPGPU).

2. Due to thermal constraints, the clock speed of CPUs (a significant factor
in increasing performance) reaches its limit. Consequently,
manufacturers decide to provide CPUs with multiple calculation cores
instead.

 These developments mean for a sequential program (running on a single
core), that it will only partially benefit from new generations of computing
systems, and it will not benefit at all from the up-scaling by combining multiple
cores in a single processor.
 The processing power of a single CPU core is higher than that of a GPU core.
But the number of cores in a CPU is still limited to about 8–12 at this moment,
while the latest GPU generation (2012/2013) provides around 2500 cores [7]. If
an application can make efficient use of these GPU cores, it can create a
significant performance gain over an application only running on a CPU. If a
specific application requires more cores than physically available, the GPGPU
architecture takes care of scheduling the application in multiple batches for you
[8, 9].
 Another new development in the GPGPU field makes the use of this
architecture for third party risk calculation finally suitable: the model
implementation requires double-precision floating point mathematics, and only
recent GPU architectures provide sufficient double precision processing power
(Beyond3D [10]).
 To develop GPGPU applications, two leading architectures exist: CUDA
(Compute Unified Device Architecture) from NVIDIA, and OpenCL (Open
Computing Language) from the Khronos group. Since CUDA is focused on
NVIDIA GPUs, it can outperform OpenCL on these devices. A comprehensive
performance comparison (Fang et al. [11]) shows that CUDA performs at most
30% better than OpenCL, but similar performance is achieved under a fair
comparison (Fang et al. [11]). But because of its portability, especially the ability
to run the application on a CPU (albeit slower in most cases than on a GPU), and
its independence from a single manufacturer, we chose to use OpenCL to
accelerate the program.

4 Design for a parallel third party risk implementation

Using GPUs may result in a significant performance improvement, but not all
applications are fit for parallelisation. The way the model is implemented in
software relates to the code instructions and the storage of the data that is being
processed, and they will be discussed in the following sections.

4.1 Terminology

An implementation that makes use of the GPU will run partially on the CPU,
also known as the host, and will delegate calculations that can be parallelised to

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 134, © 2013 WIT Press

452 Safety and Security Engineering V

the GPU, also known as the device. The GPU will distribute the calculation over
the different cores to perform a task. A program running on the GPU is called a
kernel. A task running on a single core is called a work-item.

4.2 Code considerations

A multi-core CPU can perform different tasks at the same time on different
cores. In comparison, each GPU core will run the same kernel at the same time
(Kreinin [6]). Different tasks should therefore be separated in time in order to run
it on the GPU.

4.2.1 Instruction dependencies and branching
Some parts of a program cannot be executed in parallel, because the instructions
rely on the result of other instructions. If the part of the program, in terms of
execution time, that can be parallelised is small, overall performance gain, if any,
will be small as well. This also depends on the size of the dataset on which the
parallelised part operates. It would be ideal if this data set is large, in order to
keep as many processing elements as possible busy.
 Another important indication whether a parallel implementation is efficient,
can be seen by branching in the execution path, which is incurred by conditional
statements. The GPU can only execute one branch of the execution path at the
same time. Imagine an if-statement in the kernel code for which just a couple of
work-items satisfy the condition. A couple of processing elements have to
execute the instructions for these work-items while the rest of the work-items are
idle. Therefore, programs with execution path branching are less suitable for
parallelisation than program without branching.

4.2.2 Selection of parallel code sections
The structure of the parallel program mainly adheres to the original program’s
structure. This means that at the highest level the program loops over all
requested models. In other words, requested models are performed one by one.
For each model, the program performs calculations movement by movement.
Depending on the type of movement, multiple accident types may apply. For
each accident type, the sequential program loops over all cells in the study area,
performing either Individual Risk calculations or Societal Risk calculations for
the concerning cell. This is the part of the program where most of the
calculations happen and most time is spent. Therefore, these calculations are
carried out concurrently in the parallel version (see Figure 4). The bold lines are
executed concurrently in the parallel version.
 We choose to do the calculations of multiple cells in parallel, rather than
multiple movements. One reason is that if there are fewer movements than cells,
it will lead to processor under-utilization. Another reason is that multiple work-
items would need to update the same values, leading to race conditions.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 134, © 2013 WIT Press

Safety and Security Engineering V 453

Figure 4: Main structure of the sequential program. The bold lines are
executed in parallel in the parallel version.

4.3 Data storage considerations

In comparison to the code that runs on each GPU core, the data that each core
uses can be different. By requesting the GPU work-item identification, a
different data set can be accessed for its calculations.
 For the third party risk model, the risk values must be represented as double-
precision floating point numbers. This requires extra design concern as important
parallel functions like atomic operations are only supported in OpenCL for
integer values, not double precision values. This situation may change in the
future, as next generations of GPUs may support atomic operations for double
precision.
 The GPU also has different memory, and a different memory model.
Transferring data from the CPU to the GPU and back requires some time, but
can be done in parallel with other computations. Some work-items can also share
a common memory area, called shared memory. By making use of this memory
type, the third party risk implementation can be made more efficient.

4.4 Parallel Individual Risk implementation

In this article, not all implementation steps are explained in detail, but we show
the considerations for parallelisation for one for the more important steps, the
individual risk calculation. Important other steps, like the calculation of
probability density matrices and the crash area size are discussed in Erkamp [15].
 The Individual Risk calculation can be split into a calculation and a
distribution phase. In the parallel version, each of those phases is implemented in
a separate kernel. This technique of splitting up these phases is important to
create a synchronisation point. This will be explained in the next sections.

4.4.1 Parallelising IR calculation phase
In the first phase, the risk caused by a movement, at a certain location, for a
given accident type is calculated by the following formula: 𝐼𝑅(𝑥,𝑦) = 𝐴𝑅𝑎𝑐𝑐 ×
𝑃𝐷(𝑥,𝑦) × 𝐶𝐴(𝑥,𝑦) × lethality, where 𝐴𝑅𝑎𝑐𝑐 is the accident rate of the given
accident type, 𝑃𝐷(𝑥,𝑦) is the probability density of the given accident type at
location (x,y), and 𝐶𝐴(𝑥,𝑦) is the crash area size of the accident type at location
(x,y).

FOR all models {
 FOR all movements {
 FOR all accident types applying to movement {
 FOR all cells in study area {
 Calculate risk value;
 }
 }
 }
}

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 134, © 2013 WIT Press

454 Safety and Security Engineering V

Figure 5: (a) Sample grid showing the neighbours which contribute to cell
A’s risk. (b) (Upper-right) example distribution template of cell B.

 The parallelisation of this phase is straightforward. Each work-item performs
the multiplications itself. The accident rate, probability density, and lethality are
provided by the host for each movement and accident type. Hence, at least one
complete probability density matrix must be transferred for each movement,
depending on the amount of applicable accident types.

4.4.2 Parallelising IR distribution phase
The second phase is the distribution of the risks, calculated in the first phase,
over all cells being part of a cell’s crash area. The distribution is based on the
percentage of the crash area that lies within the relevant cell, and is only
dependent on the crash area, for reasons explained in Section 2.1. The same
section showed an example of a distribution template.
In the sequential version, each cell’s calculated risk is immediately distributed
over the relevant cells. This is not possible in the parallel version, because it
would lead to race conditions, and atomic operations are not supported for
double-precision floating points (see Section 4.3).
 The solution to this problem is that each work-item should be allowed to
update the risk value of its own cell only. Therefore, each cell should check its
neighbouring cells for how much they contribute to its own risk value. This is
done by multiplying a neighbour’s calculated risk value by the correct
percentage from that neighbour’s distribution template (see Figure 5). The result
of this multiplication is added the cell’s own risk value. Because we split up the
calculation and distribution phase, we can be sure that the calculation has already
taken place for all cells. This shows the necessity of the introduction of a
synchronisation point in the implementation. This process is explained in more
detail in Erkamp [15].
 During the distribution phase, multiple work-items in a work-group (partially)
require the same data located in global memory, including initial risk values of
other cells and distribution templates. To reduce accesses to global memory, this
data is read into shared memory.

 A

 B

2 2.6 0.6 0

1 10 8.8 0.6

0 10 10 2.6

 0 1 2

(a) (b)

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 134, © 2013 WIT Press

Safety and Security Engineering V 455

Table 1: Timing comparison (in seconds) of third party risk model
implementations on a representative Schiphol scenario.

 Sequential Optimised
Sequential

Parallel
Tesla C2075

Parallel
Tesla K20m

Probability
density

8.99×103 s 8.99×103 s 839 s 474 s

Individual risk 515×103 s 62.9×103 s 384 s 163 s
Total 524×103 s 71.9×103 s 1.22×103 638 s

5 Results

5.1 Validation

The scenario that is calculated is a typical Schiphol scenario, with a year of
representative, aggregated traffic movements. The output of all runs is validated
by comparing it with the output of the sequential runs. These deviations are well
within the limits set by previous validations [13, 14]. A partial validation can be
found in Erkamp [15], and a complete validation for the third party risk model is
still planned to take place.

5.2 Timing

The calculations for the comparison have been performed by a system with an
Intel Core 2 E8400 CPU, which has two processing cores running at 3 GHz. The
GPU in this machine is the NVIDIA Tesla C2075, which contains 6 GB of
global memory and 448 processing cores running at 1.15 GHz. The timings have
been split into the time required for the probabilities densities, and the time
required for the individual risk calculation. This has been done for two reasons.
First, the probability density calculation is only needed for the different
movements. When the movements do not change, this step can be skipped.
Second, the sequential model is only optimized for the individual risk
calculation. Therefore, a more fair comparison can be made on the capabilities of
the GPU if we only look at the individual risk comparison. For completeness, we
also added the performance using a computer with the latest generation GPU;
this is an Intel Xeon E5-2670, in which 8 processing cores run at 2.6 GHz. The
GPU residing in this machine is NVIDIA’s Tesla K20m, containing 5 GB of
global memory and 2496 processing cores running at 705.5 MHz.
 The results show that the probability density calculations are improved with a
tenfold acceleration, and the individual risk calculation are increased by more
than 1300, more than the number of cores in the Tesla C2075 (448). This
indicates that the original implementation can be improved, and the resulting
optimized sequential implementation is about seven times faster. However, the
parallel individual risk calculation is still more than seventy times faster than this
optimized version. For the complete calculation, the speed-up is over 58 times if

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 134, © 2013 WIT Press

456 Safety and Security Engineering V

we look at the optimised sequential implementation, and more than 400 for the
original implementation. The latest generation Tesla K20m runs the calculation
another two times faster than the Tesla C2075 system.

6 Conclusion

In this article, we described the NLR third party risk model and the need to
improve the speed of the model implementation. The original model
implementation was developed in the early 2000s, before the introduction of
multi-core CPUs, or GPUs with general-purpose calculation possibilities. With
the advent of these new computing technologies, this opened the prospect that a
renewed model implementation would succeed in a significant speed-up. This
research shows that the third party risk model is particularly suitable to be run
with the help of a GPU, creating a 58 times speed-up. The new implementation
is not straightforward, but with sufficient knowledge on how the model works,
and what dependencies exist within the original model implementation, new
GPU modelling techniques can be used to make full use of the potential of a
GPU as generic calculation hardware.
 This performance gain enables to compute risks on a dense grid (25 × 25
metre cells) in reasonable time, as preferred by the Dutch government. It also
allows to compute risks with individual aircraft movements instead of
aggregated movements, and to compare multiple scenarios with varying input
parameters.
 By performing a dedicated analysis of the original implementation, and
creating an optimized GPU program, the research also showed the shortcomings
in the original model implementation. Some of these improvements from the
GPU program were translated back to the original sequential model application.
This resulted in a tenfold performance gain. Although this is not yet near the
performance of the GPU program, it shows the benefit of a focussed approach on
improved performance. The combination of domain expertise (third party risk)
and applied computer research on parallel computing has led to a successful new
third party risk application that allows faster studies for airport safety. There is
enough reason to believe that this multi-disciplinary approach, often called
eScience, will work in other domains as well.

References

[1] Weijts, J., Vercammen, R.W.A., van de Vijver, Y.A.J.R. & Smeltink, J.W.
Voorschrift en procedure voor de berekening van Externe Veiligheid
rondom luchthavens. NLR-CR-2004-083, 2004.

[2] CBS, PBL, Wageningen UR (2007). Externe veiligheidsrisico’s: de kans
op een ongeluk (inleiding). Indicator 0300, Ver. 05. September, 2007.

[3] Zhang, Y., Vouzis, P. & Sahinidis, N.V. GPU simulations for risk
assessment in CO2 geologic sequestration. Computers & Chemical
Engineering. Volume 35, Issue 8, pages 1631-1644. August, 2011.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 134, © 2013 WIT Press

Safety and Security Engineering V 457

[4] Bahl, A.K., Baltzer, O., Rau-Chaplin, A., Varghese, B. & Whiteway, A.
Multi-GPU Computing for Achieving Speedup in Real-time Aggregate
Risk Analysis. High Performance Computing on Graphics Processing
Units (hgpu.org). February, 2013.

[5] Palacios, J. & Triska, J. A Comparison of Modern GPU and CPU
Architectures: And the Common Convergence of Both. March, 2011.

[6] Kreinin, Y. SIMD < SIMT < SMT: parallelism in NVIDIA GPUs.
http://www.yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-
gpus.html. November, 2011.

[7] Tesla GPU Accelerators for Servers. NVIDIA. http://www.nvidia.com
/object/tesla-servers.html

[8] Gaster, B.R., Howes, L., Kaeli, D. R., Mistry, P. & Schaa, D.
Heterogeneous Computing with OpenCL. Morgan Kaufmann, Elsevier.
ISBN 978-0-12-387766-6. First edition, 2012.

[9] Scarpino, M. OpenCL in Action: how to accelerate graphics and
computation. Manning, 2012.

[10] Beyond3D. NVIDIA GT200 GPU and Architecture Analysis.
http://www.beyond3d.com/content/reviews/51. June 2008.

[11] Fang, J., Varbanescu, A.L. & Sips, H. A Comprehensive Performance
Comparison of CUDA and OpenCL. 2011 International Conference on
Parallel Processing (ICPP). Pages 216-225. September, 2011.

[12] OpenCL 1.2 specification. Khronos Group. Revision 19, November, 2012.
[13] van de Vijver, Y.A.J.R. Ondersteuning NLR bij validatieproces GEVERS.

MN-GEV-16. Dutch National Aerospace Laboratory. October, 2007.
[14] van de Vijver, Y.A.J.R. & Guravage, M.A. Validatie van TRIPAC, de

nieuwe software voor analyse van externe veiligheid rond luchthavens.
NLR-TR-2003-651. Dutch National Aerospace Laboratory. November,
2003.

[15] Erkamp, R. Master’s Thesis. Acceleration of calculation of Third Party
Risk around an airport using OpenCL. Vrij Universiteit Amsterdam, The
Netherlands. April 2013.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 134, © 2013 WIT Press

458 Safety and Security Engineering V

