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Abstract

In Europe traffic accidents are now widely recorded in national databases. In view
of the massive amounts of accident data, the use of data mining tools is essential
to sift truly relevant information. Classical statistical tools evaluate the strength
of potential causal relationships by essentially linear techniques, or strongly rely
on ad hoc specific models. We outline here how mutual information ratios based
on conditional entropy contribute to rigorously quantify the influence of causation
factors on injury severity, with no hypothesis on underlying relationships between
observed variables. We successfully apply this approach to analyze causation
factors in the German In Depth Accident Study database, which is one of the
largest and most complete in depth accident survey and data collection in Europe.
The results show that additional safety gains potential are expected from intelligent
speed adaptation systems, collision warning and collision avoidance systems.
Keywords: risk analysis, safety, mutual information, conditional entropy.

1 Introduction

Traffic accidents are a major concern due to their economic and social costs and,
above all, because accident injuries are often incapacitating or fatal. Accident
injuries can result from a large number of causes, including human, vehicle,
safety or environment factors. Information on traffic accidents in Europe are today
stored in large databases that systematically record many descriptive fields. In the
German In Depth Accident Study (GIDAS) database, dedicated to traffic accidents
in Germany, more than 800 fields are assigned to describe each accident and more
than 2000 new accidents are stored each year. Extraction of significant injury
causation factors hidden in massive databases allows a better understanding and
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determination of the crash generating issues. New preventive actions can emerge
from in depth investigations of accidents data, with one objective to reduce the rate
and severity of accidents [1]. This is an important challenge for expecting safety
benefits in the future.

Ordered probit or logit models have been used to analyze injury severity
frequencies [2]. The selection of explanatory variables is often performed by
stepwise regression associated with Bayesian Information Criteria (BIC) or Akaike
Information Criteria (AIC), or by standard regression associated with Student’s
test to eliminate variables with no significant impact [3]. For continuous variables,
the correlation coefficient ρ2 is a long-standing measure of statistical dependency,
and is often used in accidents analysis [4]. However, dependency coefficients, as
well as modeling, rely on specific underlying hypotheses. Correlation coefficients
are known to measure only linear dependencies between variables. If variables
are linked by non linear relationships, then the use of correlation is definitely not
the most efficient choice. For databases with a large number of descriptive fields,
prior knowledge of functional relationships between variables is never directly
available and consequently, linear assumptions, can be totally inappropriate to
measure statistical dependencies.

Mutual information (MI), introduced by Shannon (1949) is a measure of
statistical dependency that is able to catch complex relationships between
variables, even in case of non linear dependency. Mutual information ratios
can be computed for discrete, continuous and discrete-continuous variables [5].
MI provides a powerful extension of the classical correlation coefficient and
of Cramer’s V measure without requiring any constraint on variable nature or
linearity. In this paper, we first introduce the general concept of MI and present
some analytical and computational developments, then we show how we have
adapted this approach to variable selection and we illustrate this in the domain
of accidentology by selecting the most informative variables that explain injury
severity in a large dataset, the GIDAS database [6].

2 Mutual information

Mutual information, based on conditional entropy, quantifies the relationship
between two random variables X and Y . For example, Y could be an injury
severity descriptor and X a potential accident causation factor. The entropy
measures the average quantity of information provided by the knowledge of the
actual value of a random variable. For a random variable X with modalities αi

and occurrence probabilities pi = Probability (X = αi), 1 ≤ i ≤ m, the entropy,
HX , is defined by HX = −∑m

i=1 pi log(pi) with the convention, 0 log(0) = 0. If
X is deterministic, its entropy is minimal, and HX=0. This is because knowing the
values taken by X in random trials brings no new information, since X is constant.
But if X follows a uniform distribution, its entropy is maximal, HX = − log(m),
since any new value of X , which has a constant probability to occur, bring new
information.
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For both discrete variables X and Y , with modalities αi and βj , and with joint
probabilities pij = Probability (X = αi, Y = βj), 1 ≤ i ≤ m, 1 ≤ j ≤ p, the
joint entropy, HX,Y is defined by: HX,Y = −∑p

j=1

∑m
i=1 pij log(pij).

Conditional entropy HY/X quantifies the average information provided by
discovering the actual value of Y when the value of X is already known, and
is defined by HY/X = −∑p

j=1

∑m
i=1 pij log(pj/i) where pj/i denotes the

conditional probability of Y = βj given that X = αi. If X and Y are independent,
then HY/X = HY : knowing the value of X doesn’t bring any new information
about the value of Y .

Mutual information is based on conditional entropy and is a measure of statistical
dependency between two variables X and Y . IX,Y quantifies the average amount
of information on the actual value of Y provided by the knowledge of the actual
value of X : IX,Y = HY − HY/X . Normalized by the entropy of variable Y,
the mutual information ratio (MIR), RX,Y , is a zero-to-one range measure of the
dependency of X and Y : RX,Y = IX,Y

HY
. For two independent variables X and Y,

prior knowledge of X doesn’t provide any information on Y and RX,Y = 0. If a
deterministic functional relationship exists between X and Y , the prior knowledge
of X completely determines the value of Y and the mutual information ratio is then
maximal: RX,Y = 1.

Mutual information ratio is a non parametric measure of association between at
least two variables, Y and X . It can be applied to symbolic data (categories) as
well as numerical data. In the bivariate case, mutual information is the Kullbak–
Leibler distance between the joint distribution of (X, Y ) and the product of its
marginal X , Y .

2.1 Estimation of mutual information

In operational cases, exact joint distributions of variables are naturally unknown
and MIR must be estimated. Consider N independent observations of (X, Y )
extracted from an accident database. Joint probabilities can be estimated by p̂ij =
1
N

∑N
k=0 vk

ij where vk
ij = 1 when X = αi and Y = βj for observation k and vk

ij =
0 otherwise. The plug-in estimate of the mutual information ratio is then ÎX,Y =

ĤY − ĤY/X with R̂X,Y = ÎX,Y

ĤY
and ĤX,Y = −∑p

j=1

∑m
i=1 p̂ij log(p̂j/i).

Theoretical results quantify the estimation error between true entropy and
its empirical estimate. For a categorical variable X with m modalities and
for a large number of N observations, the estimation error ĤX − HX can
be approximated by a Gaussian random variable with zero mean and standard
deviation bounded by log(m)/

√
mN . Confidence intervals can then be computed

for MIR coefficients [7].
Below we show how we adapted this approach to factor selection.
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2.2 Factor selection using mutual information ratio

Factor selection: Let us consider a specific injury severity indicator Y and p
potential causation factors (X1, . . . , Xp). Mutual information can be used to
estimate and statistically compare the strength of the causal relationship between
Y and the p different factors as follow. Mutual information ratios are first
independently computed between Y and all Xj , 1 ≤ j ≤ p. Each MIR coefficient
lies between 0 and 100%, and evaluates the percentage of information on the
value of Y that is provided by X . To compare the influence level of a given
factor Xj on a severity indicator Y , the MIR coefficients RXj ,Y are ordered by
decreasing magnitude. X(1) then denotes the factor with the largest MIR, which
has the highest predictive power for Y :

R̂X(1),Y = max
{j}

{RXj ,Y }

Selection of factor group: Mutual information can also be computed for
multivariate factors. Let X = (Xi1 , . . . , Xik

) be a multivariate variable
regrouping k factors (k ≤ p). The MIR of Y with respect to X is computed as
above using natural extensions of the previous equations. The selection of a group
Gk of k factors, among p, that have the highest joint predictive power for Y , can be
done as above for single factors, and hence select the group G0k of k factors with the
highest MIR ratio R(G0k, Y ). Among all groups of k factors, the group G0k shows
the highest predictive power and best explains the Y values. Finding the best group
of k factors among p factors is generally computationally not feasible. Therefore,
in the multivariate framework, we specially developed a greedy algorithm based on
MIR to select the smallest group with the highest predictive power. The following
pseudo code details the algorithm for multivariate variables selection based on
MIR (table 1).

Table 1: Greedy algorithm based on MIR for selecting a group of factors of small
size with the highest predictive power.

Notation: Y is the target variable, X1, . . . , Xp the p factors.

Initialisation: Z0 = {}; G0 = {}; J0 = 1 . . . p;

choose K ∈ {1..p}; K size of the multivariate group of selected factors

Algorithm:

for k = 1 to K do

j0 = ArgMaxj∈Jk−1
MIR(Y, Uk(j)) with Uk(j) = [Zk−1; Xj];

Gk = [Gk−1; j0]; Zk = [Zk−1; Xj0 ]; Jk = Jk−1 − {j0};

end

GK is the multivariate group of size K with high predictive power on Y .
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This approach provides an efficient way of constructing increasing hierarchies
of causation factors for a given severity indicator Y . In the following, this Mutual
Information Ratio method is applied to GIDAS data in order to extract groups of
factors with a high predictive power on injury severity.

3 Accidents database

In Germany, since 1999, a consortium of two institutes (BAST, -Federal Highway
Research Institute- and FAT, -German Association for Research on Automobile-
Technique-) conducts an large German In-Depth Accident Study (GIDAS). In the
areas of Hanover and Dresden, personal injury caused by traffic accidents are
systematically reported by the police and the fire department stations. Annually,
approximately 2,000 traffic accidents are recorded and the information is stored
in an historical database. Standardized classification systems are used to describe
the severity of injuries, such as AIS (Abbreviated Injury Scale). Each accident
is analyzed in details and the motions of the vehicles and their occupants are
reconstituted. The collision processes and the resulting injuries are generally
dependent on the technical background conditions. GIDAS investigations can be
used for most aspects of passive and active safety.

The “GIDAS” database is now the largest and most complete In-Depth accident
survey and data collection in Europe. The number of available observations in
GIDAS was, at the end of 2006, around 14000 with the following per year
distribution: 1999 (1018); 2000 (1987); 2001 (1906); 2002 (1643); 2003 (1806);
2004 (1849); 2005 (2007); 2006 (1737).

4 Applications to risk factor quantification

In the GIDAS database, most variables are qualitative, and, therefore, classical
correlation analysis may be of limited use and information methods based
on conditional entropy computation offer a more rigorous tool to explore
association or causation relationships between variables. We have applied the MIR
methodology presented above to GIDAS data, that includes 14000 observations,
described by more than 800 fields. Data on all vehicles and people involved in a
crash (when at least an injured people can be found) are stored in the database. A
preliminary filtering treatment was first applied to the whole database in order
to eliminate inappropriate values [7]. For this study, tests and analyzes were
implemented using the R statistical programming software [R development Core
Team]. All the code and functions used to compute the theoretical coefficients
have been programmed using R standard language and are now available for future
applications.

4.1 Injury severity indicators

The first analysis was focused on three indicators of injury severity for different
body parts (Y variable): Maximum Injury Severity (MAIS), Head Injury Severity
and leg injury Severity [8]. To be short, we only present here the results for MAIS.
In the GIDAS database, MAIS values fall into 7 categories 0 . . . 6, corresponding
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to 7 possible values for the maximum severity of injuries. In order to analyze
whether accidents led to severe, moderate or to absence of injury, the 7 initial
modalities of MAIS were regrouped into 3 categories. The 3 labels Safe, Slightly
Injured and Severely Injured denoted respectively accidents with no injury (MAIS
tag = 0), accidents with minor injuries (MAIS tag ∈ {1, 2}), and accidents with
severe injuries (MAIS tag ≥ 3). In the database, a frequency of 60% is observed
for “no injury” accidents, and a frequency of 74% for “slight (or no) injury”
accidents (MAIS tag ≤ 2), for a total of 11586 available observations.

4.2 Potential causation factors for injury severity

A key objective of this study was to focus on a target list of potential causation
factors for injury severity and to estimate and compare the causation strengths
between potential causation factors and the injury severity descriptors. In a second
step, a combination of causation factors with the highest power to predict injury
severity was computed. A list of potential causation factors was first prepared
by the German BAST institute, based on expert knowledge. Factors describing
collision, environment, human characteristics, safety, site of accident or vehicle
characteristics were chosen (see table 2 for a complete description). These factors
were of different types: continuous, discrete or nominal. Six factors are linked to
accidents with collision: the initial speed of the collision (continuous), the kind
of opponent (6 categories), the main damage to the car (7 categories), the type
(7 categories) and kind of accident (10 categories) and whether or not a rollover
happened (binary). Environmental factors include: the speed limit (17 categories),

Table 2: Association factors used for MAIS outcome descriptor.

Variable Description Modalities

GENDER Gender (2) male/ female

PLACE Place of the accident (2) urban/ rural

TIME Time of the day (3) day/night/dawn

COLLSPEED Initial speed of collision Continuous

SEATBELT Seat belt usage (2) belted/ unbelted

ACCTYPE Type of accident (7) F/AB/EK/UES/RV. . .

ACCKIND Kind of accident (10) unfall/anfährt/. . .

LIMITSPEED Speed limit at the scene (17) 5 km/h/. . . / 140 km/h

OPPONENT Opponent (7) Car HGV Bike Cyclist . . .

AGE Age of the driver (8) (0, 18], (25, 30] (30, 35] . . .

AIRBAG Use of the airbag (2) AIRBAG /no AIRBAG

CARAGE Age of the car Continuous

DAMAGE Main damage to the car (7) Front Right Side . . . Bottom

ROLLOVER Rollover (2) yes/no
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the place (binary) and the time of the accident (3 categories). Human effects are
analyzed through the following factors: the age of the driver (8 categories), its
gender (binary), and its guiltiness (binary). The Vehicle is described by its age
(continuous) and the airbag equipment (binary). Seat belt is described by the use,
or not, of the seat belt (binary variable). Overall, a total of 15 factors were selected
for the study: 13 categorial factors and two continuous variables (collision speed
or car age), which were divided into 10 classes as previously described for the
computation of MIR.

5 Results

In this section, mutual information ratios (MIR) were computed to estimate
the causation strengths between the potentially causal factors and the accident
outcome descriptor MAIS in the GIDAS database.

5.1 Impact factors for maximum injury severity

Each MIR value were computed using more than 8000 observations, depending on
the proportion of missing values for the studied variables. As each specific MIR
calculation involves only a subset S of variables, all records presenting missing
values for one or several variables in S were temporarily removed to compute
the coefficient. The MIR coefficients were estimated using the coarser categories
(Safe, Slightly Injured, Severe Injured for MAIS. These coefficients are sorted by
decreasing order of magnitude and evaluate how well MAIS is explained by each
potential causation factor (Figure 1).

The results are presented in Figure 1. All MIR coefficients lie theoretically
between 0 and 100%. MIR allows ranking on a same graph continuous (collision
speed or car age) and discrete variables (others) which can then be easily compared
for the strength of their relationship to the variable to be explained.

In the case of the MAIS indicator, this analysis shows that the most influent
factor is OPPONENT with a MIR around 28%. Accident KIND appears in second
position (MIR = 13%), and accident TYPE comes in third position (MIR =
10%). The SEATBELT factor appears towards the middle of the list with a small
MIR (1.95%). At first sight, this is surprising since the usage of a seat belt is
considered to be an important factor affecting injury severity of vehicle traffic
accidents. Note however that today, drivers and passengers are required by law
to use their seat belt. We accordingly observe here that 97% of the available
observations in our database correspond to the use of seat-belt. MIR coefficient
is here overwhelmingly determined by cases where seat belt is used, and hence
only partially reflects the intrinsic risk associated to the absence of a seatbelt. We
observe a similar distribution with rollover accidents, which are less frequent in
the database.

The GENDER variable has fairly small MIR, and hence does not seem to have
a strong impact on MAIS.
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Figure 1: Monovariate MIR for MAIS (%). The MIR coefficient computed for
each single factor (displayed on the left) is represented by the length
of the horizontal bar. The number of joint observations used is displayed
on the right. A confidence interval at a 95% confidence level is displayed
at the right end of each bar.
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Figure 2: Multivariate MIR for MAIS descriptor (%).
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5.2 Group of factors for explaining maximum injury severity

Multivariate analysis was then conducted to analyze which groups among a given
number of factors has the highest mutual information ratio with MAIS, and hence
best explains Maximum Injury Severity. The following graph presents, for MAIS,
the highest MIR computed as a function of the number of potential causation
factors (Figure 2), using the greedy algorithm previously introduced.

The 3rd column of Figure 2 indicates, for instance, that the group of 3 factors
(OPPONENT, Accident KIND and Collision SPEED) has a joint MIR of 38%;
this group of factors has the highest predictive power for all groups of 3 factors.
It is interesting to observe that, for the single factor analysis, OPPONENT,
Accident KIND and Accident TYPE were respectively in 1st, 2nd and 3rd position,
regarding the association strength level (Figure 1). In the multivariate analysis,
Accident TYPE does not appear in the group of 3 factors and is replaced by the
factor Collision SPEED (which was in 4th position for the single factor analysis,
after the type of accident). This is essentially due to the sizable redundancy
between accident KIND and TYPE, as can be analyzed from their pairwise MIR,
which is equal to 52%.

6 Discussion and conclusions

The proposed statistical methodology is applicable to accident research and allows
a better understanding and determination of the injury determinants. Our results
show that additional safety can be expected from collision warnings, collision
avoidance systems, automatic crash notification systems and intelligent speed
adaptation. Benefits of technology-based safety measures can be expected using
statistics analysis and the safety gains are even higher for higher injury severity
levels. The MIR coefficients estimated for MAIS in our study confirmed by
objective computation the empirical knowledge of BAST Experts about the main
injury severity causation factors in accidents (with regard to the list of factors
analyzed here).

Factors selection using multivariate MIR yields groups of factors of minimal
size, with no redundancy and that best explained the injury severity. One main
advantage of this approach is to intrinsically handle multi-collinearity factors. If
a deterministic relationship exists between two factors, only one of them will be
selected. This property is particularly useful when dealing with accidents because
traffic data often show strong correlation between variables (e.g. accident kind and
accident type in our case). The results help then to focus on a small key influent
parameters.

A theoretical strong advantage of MIR analysis is that it does not require to
specify a functional form of dependency such as correlation or Cramer indicator.
In a classical regression analysis, the estimated relationship between the predictor
and the factors can be erroneous if the model is miss-specified. As well, in case
of strong correlations between the factors, the estimation of the coefficients is
less precise in a regression analysis, which can lead to wrong interpretations
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with regard to independent and dependant factors. On the contrary, due to the
probabilistic properties of MIR, these mutual information ratios are very efficient
to detect non linear causation links.

Since mutual information ratios are model independent, they can be used prior
to modeling to select the most relevant group G of explanatory variables to predict
a given accident outcome Y . One can then construct a model to predict Y outcome
given the group G of selected variables: Y = FS(X(1), . . . , X(k)). The empirical
relationship FS naturally depends on the data set S of observations used. In a more
complete study, we have demonstrated how accident data analysis can be useful
to select the most relevant variable for model building. In preparatory analysis
of accident data prior to model building, it has been validated that, because it
is model independent, mutual information is a powerful tool to select the most
relevant variables [9].

MIR is a powerful method for identifying the strength of the relationships
between variables of different natures without any constraint on the distribution
laws. It is a very useful way to select the most pertinent variables that may be
included in predictive models.
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