
Forecasting of monthly rainfall in the Murray 
Darling Basin, Australia: Miles as a case study 

J. Abbot & J. Marohasy 
School of Medical and Applied Sciences,  
Central Queensland University, Australia 

Abstract 

The Murray Darling Basin accounts for nearly 40% of the value of agricultural 
production in Australia, and 65% of the irrigated land. We use an artificial neural 
network (ANN), a form of machine learning, to show the potential for more 
reliable monthly rainfall forecasts with a lead time of 3 months, and the potential 
skill of the same model for 6, 9, 12 and 18 month lead-times for the township of 
Miles, in the northern Basin. The skill of these forecasts is contrasted with the skill 
of the Predictive Ocean Atmosphere Model for Australia (POAMA), a general 
circulation model used for operational forecasts by the Australian Bureau of 
Meteorology. Forecasts from the ANN are significantly more skilful for all lead 
times. The ANN’s capacity to integrate information from the climate indices Niño 
1.2, 3, 3.4 and 4, the Dipole Mode Index (DMI), and also a composite local 
maximum and minimum atmospheric temperature series, contributes on average 
approximately 60% of the skill of the ANN forecast. 
Keywords: rainfall, forecasting, artificial neural network, Murray Darling Basin. 

1 Introduction 

In Australia, water infrastructure and irrigated agriculture are most developed in 
the Murray Darling Basin, which covers 14% of Australia’s land area [1]. The 
Water Act 2007 requires government to make decisions on water allocations 
between agriculture and the environment [2–4]. However, this planning, and on-
farm productivity more generally, is constrained by the reliability and lead-time 
of rainfall forecasts [5]. 
     Historically, statistical models based on climate indices including Pacific and 
Indian Ocean sea surface temperatures and Southern Oscillation Index (SOI) were 

 WIT Transactions on Ecology and The Environment, Vol 197,
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2015 WIT Press

doi:10.2495/RM150141

River Basin Management VIII  149



used by the Bureau of Meteorology to generate seasonal (3-month) forecasts from 
one to three months in advance [6]. The skill of these forecasts was always limited 
by the high variability in the strength of the associations of climate indices with 
rainfall, both temporally and spatially [7]. For example, Murphy and Ribbe [8] 
showed that the SOI and Pacific Ocean temperature indices Niño 3 and Niño 4 are 
influential, but quantitative relationships with seasonal rainfall are highly variable 
by time and geographic location, with linear correlations typically in the range  
-0.2 to 0.2. Similar results were reported by McBride and Nichols [9] and Cai et 
al. [10] for relationships between rainfall and SOI. Schepen et al. [11] also 
examined the relationships between 13 lagged monthly climate indices, including 
SOI, Niño 3, Niño 3.4, Niño 4 and DMI with seasonal rainfall over the Australian 
continent, reporting high variability in the strength of association, both temporally 
and spatially. 
     While traditional statistical models are limited in the number of input variables 
that can be effectively combined, advances in machine learning have significantly 
expanded this potential [12]. Machine learning is an interdisciplinary field that has 
close relationships with artificial intelligence, pattern recognition and data mining. 
While data mining focus on the discovery of previously unknown properties in 
data [13], machine learning focuses on prediction based on known properties 
learned from exposure to data sets during a process known as “training”. During 
training, a model is constructed from algorithms. A core objective of the learning 
process to be able to generalize from experience [14]. Machine learning has 
become important in the medical diagnostic field [15–18] where information needs 
to be combined from different tests in which each test may carry some relevant, 
but limited, diagnostic information. There may be no consistently useful method 
of combining the information, with a traditional reliance on the skill and 
experience of the medical practitioner. There are obvious parallels here with 
rainfall forecasting, particularly in an Australian context, where individual climate 
indices convey useful predictive information about rainfall, but the associations 
are typically fragmented. 
     The mainstream approach to rainfall forecasting, is to attempt to simulate the 
actual physical processes through general circulation modelling. The Predictive 
Ocean Atmosphere Model for Australia (POAMA) is a general circulation model 
(GCM) developed by the Australian Bureau of Meteorology [19–21]. It has been 
run operationally since 2002, and used for all official seasonal forecasts since May 
2013. 
     This study assesses the reliability and skill of an ANN versus POAMA to 
forecast rainfall for the location of Miles, in the northern Murray Darling Basin, 
building on earlier research using ANNs to forecast monthly rainfall for locations 
in south-eastern, central, western and northern Queensland [22–26]. 

2 Data and method 

We used Neurosolutions Infinity software (NeuroDimensions Inc., Florida) to 
build a neural network model based on the attributes considered potentially the 
most important predictors of rainfall in the northern Murray Darling. The 
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reliability of this model was tested by running 7 trials for a three-month lead for 
the township of Miles on the western Darling Downs using the same initial inputs. 
This model was then used to predict monthly rainfall for Miles for 1, 3, 6, 9, 12 
and 18 months in advance, for the 10 year period April 2004 to March 2014.  
     Miles was chosen as a case study because it has an exceptionally long rainfall 
record. The post office (station number 42023, Latitude -26.66S, Longitude 
150.18E, elevation 302 m) began recording rainfall in 1885, and is still operating 
as a weather station today. 
     The other reason for choosing Miles, is that it is one of two sites in the Murray 
Darling Basin for which we were provided with output from POAMA, allowing 
direct comparison of output from the ANN with the general circulation model used 
for operational forecasts by the Australian Bureau of Meteorology. We compared 
output from the ANN with POAMA for 1, 3 and 9 months lead times for the period 
April 2004 to March 2011. 
     The attributes included monthly values of an atmospheric temperature 
composite and the following climate indices: SOI, DMI, Niño 4, Niño 3.4, Niño 
3, Niño 1.2 and the Inter-decadal Pacific Oscillation (IPO). The forecasts were run 
with the full set of attributes, and also local rainfall, each lagged up to 12 months. 
The data was divided into training (70%), evaluation (15%) and test sets (15%). 
The test set was not used in training or evaluation. 
     Values for DMI and the four Niños were sourced from the Royal Netherlands 
Meteorological Institute Climate Explorer – a web application that is part of the 
World Meteorological Organisation and European Climate Assessment and 
Dataset project. Values for IPO were provided by Chris Folland from the UK Met 
Office. Values of SOI and also local minimum and maximum atmospheric 
temperatures used in the development of the temperature composite were obtained 
from the Australian Bureau of Meteorology. 
     We use Pearson correlation coefficient (r), the Mean Absolute Error (MAE) 
and Root Mean Square Error (RMSE) to compare the skill of the rainfall forecast 
generated by the ANN, POAMA and also climatology (the long-term average). 

3 Results 

The neural network model was run seven times for a 3-month lead with very little 
variability of output. The mean Pearson correlation coefficient was 0.75 (SE Mean 
0.009, StDev. 0.025), mean RMSE was 33.8 (SE Mean 0.622, StDev. 1.645) and 
MAE was 25.8 (SE Mean 0.390, StDev. 1.031). Even the least skilful of the seven 
forecasts, measured in terms of lowest Pearson correlation (r = 0.69), and highest 
RMSE (35.6) and MAE (26.9), successfully forecast the exceptionally wet 
summer of 2010–2011 in south east Queensland [27], Figure 1. 
     No single attribute was responsible for the skill of the forecasts, and there was 
considerable variability in the relative contribution of the different inputs 
attributes, Table 1. 
     For the period from 2002 through until 2011, seasonal rainfall predictions were 
made by the Australian BOM using POAMA 1.5. In July 2011, the Bureau 
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Figure 1: The best (orange) and worst (brown) forecast monthly rainfall for a 3-
month lead, April 2004 to March 2014, and also observed rainfall 
(blue). 

 
Table 1:  The relative percentage contribution of the different input attributes 

(complex refers to a combination of attributes) to the three month 
forecast for the 7 different model runs. 

Variable Mean (%) St. Dev. Min. Median Max. 
SOI 7.13 6.11 0 8.5 15.9 
IPO 9.01 6.73 0 8.3 20.3 
DMI 10.33 3.32 5.3 9.3 15.5 
Niño 19.46 7.79 9.2 19.3 29.9 

Temps. 28.16 5.17 22.1 27.5 37.3 
Rainfall 7.10 3.42 3.5 8.5 11.7 
Complex 18.86 11.77 1.5 22.7 31.4 

 
provided us with monthly forecasts for the period to March 2011 as simple bilinear 
interpolations of surrounding grid points which were calculated from the ensemble 
mean which in turn had been calculated from many runs of this general circulation 
model, POAMA 1.5. Despite repeated requests, we have been unable to obtain 
forecasts for the subsequent period, nor forecasts from the newer version of 
POAMA, Version 2.4. Our analysis is thus limited to the period to March 2011, 
Figure 2. 
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Figure 2: Forecasts from POAMA 1.5 (yellow line), and the ANN (red line) 
benchmarked against actual observed rainfall (blue line) for a 3-
month lead for the period July 2004 to March 2011. 

     The inability of POAMA 1.5 to forecast the exceptionally wet summer of 
2010–2011 contrasts dramatically with the ANN models’ consistent forecast of 
this important feature, Figure 2. 
     Consistent with reported skill scores for POAMA in the literature [28–30], the 
forecast from POAMA downscaled from an ensemble mean for the locality of 
Miles was relatively poor at all lead times, Table 2. 

4 Discussion 

Seasonal rainfall predictions for Australia from POAMA 1.5 were run 
operationally from 2002 to 2011. The Bureau then changed to POAMA versions 
2 and 2.4. In May 2013, the operational forecasts from POAMA 2.4 became the 
official forecasts for 250 x 250 kilometre grid areas (total area 62,500 km2) for the 
entire Australian continent, including the Murray Darling Basin. POAMA 
versions 2 and 2.4 are considered somewhat more reliable than version 1.5 [28], 
however, the improved accuracy is generally reported simply in terms of an 
improved capacity to forecast above or below median rainfall for each grid area. 
This is consistent with the format in which the official forecast is announced 
publicly, that is official forecasts are simply presented as the probability of being 
less, or more than, the long-term median for each grid location. 
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Table 2:  Comparison of rainfall forecast skill for different forecasting methods 
at leads of 1, 3, 6 and 9 months for the period July 2004 to March 2011. 

Model R MAE (mm) RMSE (mm) 

Lead 1 month 

ANN 0.82 22.8 29.4 

Climatology 0.46 32.1 44.6 

POAMA 0.43 33.1 45.5 

Lead 3 months 

ANN 0.74 25.2 32.6 

Climatology 0.44 32.8 45.2 

POAMA 0.43 33.0 45.5 

Lead 6 months 

ANN 0.74 26.2 33.8 

Climatology 0.33 33.6 47.6 

POAMA 0.33 34.7 48.0 

Lead 9 months 

ANN 0.74 25.6 33.2 

Climatology 0.34 33.9 47.3 

POAMA 0.33 34.2 47.9 
 
 
     The few reported studies that have quantified the skill of the forecasts from 
POAMA 1.5, 2 and 2.4, beyond simply registering above or below medium 
rainfall, suggest that at a 1-month lead time, the correlations between monthly 
observed rainfall and output from POAMA can approach a correlation coefficient 
of about 0.4 [29]. This forecast skill quickly falls away with time, and by a lead-
time of three months the forecast from POAMA is generally consistent with 
climatology, that is the long term average for the region [29]. Hawthorne et al. 
[30] reported that the skill of monthly rainfall forecasts derived from POAMA 2.4 
at lead times up to 9 months is generally low. 
     This assessment of POAMA forecast skill is consistent with the results we have 
obtained, Table 2. At a lead of one month POAMA gives a slightly more skilful 
forecast than climatology, but at 3, 6 and 9 months the forecast from POAMA is 
essentially only equivalent to climatology, Table 2. It can be concluded that 
POAMA is not introducing significant additional rainfall forecast skill additional 
to climatology beyond 1 month lead time. Considered another way, POAMA 
generates anomalies which, when added to climatology, are effectively 
introducing low level noise. In contrast, the ANN gives a consistently higher 
correlation coefficient, r, and lower MAE and RMSE than climatology at 1, 3, 6 
and 9 months, Table 2. 
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     The combined four Niño values (1.2, 3, 3.4 and 4) provide on average about 
20% of the forecast skill for the ANN models, Table 1. Another measure of ENSO, 
SOI, provides approximately 7% of the skill, Table 1. But the actual relative 
percentage contribution of the different input attributes was highly variable, Table 
1. This is consistent with the extensive literature on the variable and often small, 
but nevertheless important, relative contribution of the different indices to rainfall 
in Australia, including in the Murray Darling Basin [11]. 
     The relatively high skill scores for Miles for all lead times, Table 2, combined 
with the consistency of the forecast as demonstrated at the 3-month lead (r = 0.75, 
StDev 0.0246, n = 7) indicates that ANNs have significant application for rainfall 
forecasting in the Murray Darling Basin where there is a need for more reliable 
rainfall forecasts with longer lead-times [31]. That the seven different runs of the 
ANN at three months each forecast the wet summer of 2010–2011, also suggests 
that the ANNs can create a model that can effectively accommodate the extreme 
variability that characterises rainfall in the Murray Darling Basin, Figure 1. 
     Our findings are consistent with the work of Mekanik et al. [32], who also used 
an ANN to forecast rainfall in the Murray Darling Basin. In particular a 
comparison of multiple regression and ANNs for monthly forecasting in the state 
of Victoria, indicated that ANNs provided more skilful forecasts and that 
correlation coefficients of 0.58–0.97 could be achieved for western Victoria that 
is part of the south-eastern Murray Darling Basin [32]. 

5 Conclusion 

The forecasting of rainfall in eastern Australia, including the Murray Darling 
Basin, has traditionally been approached through the application of simple 
statistical models or GCMs. We suggest a third way using machine learning, in 
particular ANNs. 
     A major limitation of the first approach, using simple statistical models that 
rely on empirical relationships between observed rainfall and one or two input 
parameters, is that there are no simple relationships extending temporally or 
geographically where any specific climate index dominates. At most, any 
individual climate index may explain only about 20% of the rainfall variability at 
a particular location [11]. It is also apparent that there is no simple method to 
ascertain what lag period for the particular indices selected should be included to 
forecast a specific lead time, for any one location [11]. Assessment of the many 
studies undertaken over recent decades [6–11, 33–35], indicates that the problem 
of pre-selecting optimal inputs is intrinsically difficult, and that forecast solutions 
are not amenable to the application of simple formulas incorporating sparse 
information. 
     The second approach, using GCMs, assumes that ocean and atmospheric 
processes are well enough understood that they can be represented mathematically 
in physical models that can provide useful forecast information. However, GCMs 
do not perform well at forecasting rainfall, and are very expensive to run. 
Furthermore, the GCMs produce output corresponding to very large grid areas, 
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and this requires downscaling before useful localised rainfall forecast information 
could potentially be generated. 
     The third approach, our approach, is based on the assumption that there are 
patterns embedded in historical data that are useful predictors of rainfall. No 
assumptions are made about the actual physical processes that generate rainfall at 
a particular location. Much of the skill is in the construction of the data sets and 
choice of the ANN configuration. 
     Using Miles as a case study, we have shown that it is possible to forecast 
monthly rainfall in the Murray Darling Basin with a high level of skill for lead 
times between 1 and 18 months using an ANNs. The skill of the forecasts remains 
consistent across repeated runs with the same initial input data and does not 
deteriorate significantly as lead time is increased. Furthermore, the skill is 
significantly higher than can be achieved using POAMA. The output from the 
ANN provides localised rainfall forecasts without the need for complex 
downscaling procedures. Another advantage of the ANN is that it quantified the 
amount of rainfall expected, rather than just providing a categorisation of above 
or below median. 
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