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Abstract 

Reservoirs are one of the most efficient infrastructures for integrated water 
resources development and management in a river basin. Rechecking 
characteristic flood levels plays a more and more important role in flood risk 
management, especially with extending hydrologic time series for a built 
reservoir. Hydrologic uncertainty is a key factor which impacts probability 
distribution of characteristic flood levels. Methodology of stochastic differential 
equation for flood routing is proposed in order to derive probability distribution of 
characteristic flood level for a built reservoir. The Three Gorges reservoir in the 
Changjiang River basin of China is selected for a case study. The uncertainty of 
flood is transformed into uncertainty of characteristic flood level so as to analyze 
probability distribution of characteristic flood level. One hundred and 
twenty-eight years of daily runoff data from 1882 to 2009 have been used to test 
the method. The results indicate that the proposed method can make an effective 
derivation of probability distribution of characteristic flood level by considering 
hydrologic uncertainty. Reliability of hydrologic time series and original checking 
of flood levels (180.4 m) increases with the increasing value of n. Reliabilities of 
the hydrologic time series and checking of flood levels are 93.19% and 99.17% 
under the sample size 120, respectively. The research results will provide 
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important theoretical and technical support for flood risk management of river 
basins. 
Keywords: characteristic flood level, uncertainty, reliability, stochastic 
differential equation. 

1 Introduction 

Characteristic flood levels of reservoirs usually contain upper water levels for 
flood control, designing flood levels and checking flood levels. Hydrological 
uncertainty is one of the key factors which impacts probability distribution of 
characteristic flood levels. Rechecking characteristic flood levels has been 
studied by many relative scholars. Among them, Andrade [1], Li et al. [2], and 
Zhou and Guo [3] had confirmed it. Currently, designing flood frequency and 
flood risk are usually used for quantitative analysis of rechecking characteristic 
flood levels. However, risk analysis studies combined with reliability analysis 
for hydrologic time series and checking flood levels are still quite scarce. In this 
paper, a methodology of stochastic differential equation is proposed and 
developed to derive probability distribution of characteristic flood levels in order 
to recheck characteristic flood levels of a built reservoir after extending the 
hydrologic time series. The Three Gorges reservoir (TGR) in the Changjiang 
River basin of China is selected for a case study. 

2 Methodology 

To analyze the sampling property of reservoir water levels, a stochastic 
differential equation with a stochastic input term and a random initial condition 
must be established. 

2.1 Sampling property of reservoir water level 

The Wiener process with zero mean can be found from reservoir flood routing 
equation (1). The equation (1) is a typical Ito equation with a stochastic input 
term and a random initial condition as shown by Soong [4]: 
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where H(t) is the reservoir water level hydrograph at time t, H0 is the initial 

reservoir water level at time zero,  Q t  is the inflow design flood 

hydrograph at time t and  ,q H t  is the outflow discharge hydrograph which 

is a function of H,  G H  is equal to dV dH  and V is reservoir volume,

 B t  is that of Brownian motion.
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   The numerical solution of Euler is used to solve the stochastic differential 

equation (1) (Yan et al. [5]). The variance of B(t) is equal to    2 2
Q t t G H , 

when uncertainty of hydrological inflow is only considered as the main random 
factor of B(t). According to the Wiener process, the reservoir water level H(t) 
follows the normal distributed random variable with mean 

      - ,Q qt H t G H t   and variance    2 2
Q t t G H , i.e.: 

             2 2- , ,Q q QH t t H t G H t t t G H        (2) 

2.2 Sampling error of characteristic flood level 

Let CFL Yf, with f=1,2,…,m, be an independent and identically normal 

distributed process with mean   and variance 2 , i.e.: 

 2
1 2 m, , , N ,Y Y Y                       (3) 

   Let’s assume the mean   and variance 2  are estimated by the 

Maximum Likelihood Estimation method (MLE), namely: 
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where y1, y2,…, yn is a sample from (2), n is sample size, Y  is sample mean, 
2S  is sample variance. With reference to a generic observation Y, not included 

in the estimation sample, the corresponding estimated CFL Z  is given by the 
sample equation based on the sample mean and standard deviation: 

 

- -

= =
Y Y Y

Z
S




                       (6) 

   The CFL value Z, based on the population mean and standard deviation of 
the underlying series is: 

-
=

Y
Z




                          (7) 

   Therefore, the sampling variability of the CFL can be characterized by 
investigating the distribution of the following random variable as a function of 
the estimation sample n: 
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   The r.v. Z  is therefore the ratio of a normal r.v. to the squared root of a 
2  r.v. and thus, after an appropriate rescaling, it is distributed as a Student’s t. 

Indeed, it can be shown that: 
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   From equation (10), it follows that 
-

E =0
Y Y
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 
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 and 

-
Var =

2Y Y n - 1

S (n - 1)(n - 3)

 
 
 

. 

   Analytical derivation of the distribution of D is not an easy task, since D is 
the difference of two dependent r.v. with a standard normal and a student’s t as 
marginal distribution, respectively. However, the first two moments of D can 
provide enough information to characterize the sampling variability of the CFL, 
since they allow to compute the bias and the Mean Squared Error (MSE) of 
estimation, as: 

 Bias=E D                        (11) 

   22MSE=E =Var +ED D D                 (12) 

   In practice it is preferable to use the Root Mean Squared Error (RMSE) of 
estimation which can be computed by taking the square root of the MSE: 

RMSE= MSE                       (13) 

   The bias term E[D] can be computed as: 

  - - - -
E =E - =E -E =0

Y Y Y Y Y Y
D

S S

 
 

    
        

         (14) 

since both expectations are zero. Thus, in the normal case, the CFL estimation 
given by equation (6) is unbiased. As a direct consequence, the MSE of 
estimation coincides with Var[D]. 
   On the basis of equation (12), the MSE can be written as: 
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(15) 

   The first term in the above equation is obviously 1. The second term, as it has 

been shown previously, is equal to 
2n - 1

(n - 1)(n - 3)
. 

   The covariance term in equation (17) can be written as: 
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   The second term is obviously zero, since the observation Y is not included in 

the estimation sample, and therefore it is uncorrelated with the sample mean Y  
or the sample standard deviation S. 
   By means of conditional expectation concepts, the first covariance term in 
equation (16) can be rewritten as: 
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   The latter expectation can be computed by reminding that S2 is distributed 

according to a rescaled 2  distribution and therefore it follows Cancelliere and 

Bonaccorso [6]: 
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   Finally, combining equations (15), (17) and (18), it follows that: 
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thus 
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   It can be inferred from equations (19) and (20) that, in the normal case, the 
MSE and RMSE of estimation of CFL does not depend on the parameters   

and 2  of the underlying variable, but only on the sample size n (n≥4). 
Moreover, the values of MSE and RMSE decrease with the value of n and are 
equal to maximum with n=4. 

2.3 Rechecking indicators of characteristic flood level 

Two rechecking indicators are developed to verify reliability of hydrologic time 
series and CFL for built reservoir after extending hydrologic time series. 
   The first rechecking indicator is reliability of hydrologic time series. The first 
reliability   is defined as: 

   
 

100%
RMSE n = 4 - RMSE n

=
RMSE n = 4

            (21) 

   It can be also inferred from equation (21) that, in the normal case, the value 

of   does not depend on the parameters   and 2  of the underlying 

variable, but only on the sample size n (n≥4). 
   The second rechecking indicator is reliability of the ith CFL. The second 
reliability   is defined as: 

 = 100%iz                        (22) 

where the value of zi is standardized by equation (6),     is standardization 

normal distribution function. 

3 Results and discussion 

This section briefly introduces the study area, after which simulation results for 
TGR are presented and discussed. 

3.1 Study area 

The Three Gorges reservoir (TGR) is a vitally important and backbone project in 
the development and harnessing of the Changjiang River in China. The location 
map and characteristics of the TGR is shown in Figure 1. The TGR is the largest 
water conservancy project ever undertaken in the world. The main functions of 
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TGR are flood control, power generation, water supply as well as navigation, etc. 
The characteristic parameter values of TGR are given in Table 1. The current 
flood control operating rule of TGR is referenced by Zhou and Guo [3]. 
 

 

Figure 1: The location map and characteristics of the TGR. 

Table 1:  List of characteristic parameter values of TGR. 

Flood limited 
water level/m 

Upper water level for 
flood control/m 

Designing flood 
level/m 

Checking flood 
level/m 

145.0 166.9 175.0 180.4 

3.2 Analysis on rechecking of characteristic flood level 

One hundred and twenty-eight years of daily runoff data in TGR from 1882 to 
2009 have been used to test the method. As analysis on the rechecking of the 
original checking flood level (180.4 m) in TGR for example, the checking flood 
level is obtained from the maximum flood level by flood routing operation 
according to flood control operating rules. Sample sizes of flood data in four 
schemes are 30, 60, 90 and 120, respectively. The boxplot of maximum flood 
levels under four kinds of sample sizes are shown in Figure 2. Figure 2 shows 
that the mean and quartile of maximum flood levels increase with the increasing 
value of n, however, the upper of maximum flood levels is less than or equal to 
180.4 m and the lower of maximum flood levels is larger than or equal to 175 m. 
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Figure 2: Boxplot for checking flood levels under four kinds of sample sizes. 

Changjiang 
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   Density probability curve of normal distribution for checking flood levels 
under four kinds of sample sizes is shown in Figure 3. Figure 3 shows that the 
variance of maximum flood levels increases with the increasing value of n. 
Besides, the sharp curves become shorter and fatter with the increasing value of 
n. 
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Figure 3: Probability density curve of normal distribution for checking flood 
level under four kinds of sample sizes. 

   The statistic result about reliabilities of hydrologic time series and original 
checking flood level (180.4 m) under four kinds of sample sizes is shown in 
Table 2. Table 2 shows that (a) reliability   of hydrologic time series 
increases with the increasing value of n and information of flood sample, (b) 
reliability   of original checking flood level (180.4 m) also increases with the 

increasing value of n and (c) both reliabilities   and   monotonically 

increase with the increasing value of n, reliability   is equal to 85.46% and 
93.19% for sample sizes with 30 and 120, respectively as well as reliability   

is equal to 96.77% and 99.17% for sample sizes with 30 and 120, respectively, 
both reliabilities   and   will approximate 100% with sample size 

+n    when the maximum flood level is less than or equal to 180.4 m in 
TGR. 

Table 2:  Results of dual reliability under four kinds of sample sizes. 

Sample size 
n 

Reliability 
 (%) 

Reliability 
 (%) 

Maximum flood level 
(m) 

30 85.46 96.77 180.4 

60 90.16 98.36 180.4 

90 92.08 98.90 180.4 

120 93.19 99.17 180.4 
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   Monte Carlo simulation is used to validate the equations (21) and (22) which 
the RMSE and   for estimation of hydrological time series do not depend on 

the parameters   and 2  of the underlying variable, but only on the sample 

size n. The steps of Monte Carlo simulation are designed as follows: (a) 50,000 
of checking flood level Z with sample sizes 30, 60, 90 as well as 120 subjecting 
to standardization normal distribution are generated by Monte Carlo simulation, 

respectively, as well as another estimated checking flood level Z  is given by 
the sample equation based on flood routing operation, (b) the RMSEs based on 
observation (flood routing operation) and theoretical RMSE are computed by 
equations (14) as well as (21), respectively and (c) the reliabilities   based on 
observation and theoretical RMSE are computed by equation (22). Comparison 
for reliabilities   of hydrologic time series based on observation and 
theoretical RMSE under four kinds of sample sizes is shown in Figure 4. 
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Figure 4: Comparison for reliabilities of hydrologic time series based on 
observation (flood routing operation) and theoretical RMSE 
(equation 22) under four kinds of sample sizes. 

   Figure 4 shows that the reliability   of hydrologic time series based on 
observation is in good coincidence with the reliability   of hydrologic time 
series based on theoretical RMSE. Therefore, the result of Figure 4 demonstrates 
that the RMSE and reliability   for estimation of hydrological time series do 

not depend on the parameters   and 2  of the underlying variable, but only 

on the sample size n. 

4 Conclusion 

A stochastic differential equation for flood routing is proposed and developed in 
order to derive the probability distribution of characteristic flood levels for a 
built reservoir. The Three Gorges reservoir in the Changjiang River basin of 
China is selected as a case study. The following conclusions are drawn: 
(a) Both reliabilities   of hydrologic time series and   of original checking 

flood level (180.4 m) increase with the increasing value of n and information 
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of flood sample. Reliabilities   and   will approximate 100% with 

sample size +n    when the maximum flood level is less than or equal 
to 180.4 m in TGR. 

(b) The RMSE and reliability   for estimation of hydrological time series do 
not depend on the parameters   and 2  of the underlying variable, but 
only on the sample size n. 
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