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Abstract 

The lack of dense ground networks of meteorological stations in many parts of 
the developing world impedes accurate hydrological modelling. These are 
regions that could greatly benefit from satellite precipitation data. However, 
there are significant problems with satellite products in providing reasonable 
estimates of precipitation over land. Methods exist that can adjust satellite 
products (with ground gauge or radar data) providing more robust estimates of 
precipitation. However, high quality ground data may not exist within the pixel, 
typically 0.25o x 0.25o, to provide the necessary information to facilitate the 
adjustment of the satellite product. To address this problem this study will 
examine how streamflow performance, based on satellite products (TRMM 3B42 
Real-time – TMPA-RT; CMORPH) adjusted with ground precipitation data, will 
vary over a range of spatial transfer distances (0o to 3.00o). The spatial transfer 
distance is the mean distance that a rain gauge is located away from the centroid 
of the watershed. This study compares simulated (driven by adjusted satellite 
precipitation) and observed streamflow from six moderately large basins from 
the United States. These basins span a range of climatic conditions from dry (San 
Pedro Basin – Arizona; Cimmaron Basin – Oklahoma; Nueces Basin – South 
Texas; middle Rio Grande Basin – Texas and northern Mexico) to humid 
(Alapaha Basin – Georgia; Upper Tar Basin – North Carolina). This study is 
unique because it quantities how far spatially transferred precipitation data can 
be potentially applied to support hydrologic modelling, which is knowledge that 
can be applied to poorly gauged regions of the world. 
Keywords: TRMM, CMORPH, satellite precipitation, spatial transfer, SWAT. 
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1 Introduction 

Satellite precipitation products have great promise to support hydrologic 
applications in the third world where ground based monitoring of precipitation is 
limited. However, there have been some performance issues with these products 
in terms of comparison with ground precipitation data (see Gottschalck et al. [1]; 
Ebert et al. [2]; and Tian et al. [3]). Issues include a significant bias that can be 
over 100%, for example in the US Great Plains, as well as problems with 
precipitation detection and false alarms (satellite product detecting precipitation 
when none is sensed by ground based monitoring). A number of approaches have 
been developed to adjust satellite precipitation mostly focusing on bias 
correction (Vila et al. [4]). Additionally, Tobin and Bennett [5] developed a 
method that corrects for bias, lack of precipitation detection, and false alarms.  
     For the foreseeable future, local ground-based adjustment of satellite 
precipitation products will be necessary to facilitate their utilization for real 
world applications. While it is commendable to strive for perfection in rainfall 
retrievals and algorithm development the reality is that even mature remote 
sensing platforms still rely on significant ground-based adjustments. For 
example, the success of the US National Weather Service (NWS) Multi-Sensor 
Estimator (MPE) and Quantitative Precipitation Estimation (QPE) products are 
largely based on input from numerous field offices that provide the necessary 
insights to correct for local bias. This expert local knowledge across the world 
will be essential as we move into the era of the Global Precipitation 
Measurement Mission (GPM) to help adjust satellite products over land in order 
to provide desired input for hydrological applications worldwide. 
     Consequently, there is a need to determine if adjusted satellite products 
provide a viable option to quantify precipitation in poorly gauged regions of the 
world. An additional question is what is the magnitude of uncertainty associated 
with the adjustment process and its impact on applications such as hydrological 
simulations? The assumption can be made that uncertainty will increase if the 
rain gauge utilized in the adjustment process is spatially transferred over a great 
distance relative to the satellite grid cell that is adjusted. Another basic 
assumption is that hydrological model results, for example streamflow, should 
deteriorate if a distal rain gauge is utilized for adjustment. The more interesting 
question of what is the relationship between spatial transfer distance and 
streamflow simulation performance is addressed by this study. 
     This paper examines how streamflow performance based on adjusted satellite 
precipitation products varies with spatial transfer distance for six moderately 
large basins from the United States, which span a range of climatic conditions. 
Satellite precipitation products examined include the TRMM Multi-Satellite 
Precipitation Analysis (TMPA-RT) and the Climate Prediction Centre (CPC) 
Morphing Method (CMORPH) both of which have reported issues related to 
accuracy in well monitored regions such as the United States and Australia (see 
[1–3]). This study documents the drop-off in streamflow performance as a 
function of spatial transfer distance associated with the adjustment of these two 
satellite products. Significantly, this work will provide guidance in terms of how 
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a satellite precipitation product can be applied to support the hydrologic 
modelling of poorly gauged regions of the world.  

2 Study areas and precipitation data description 

Six, moderately large (1971 to 8684 km2) basins from CONUS that are located in 
a diversity of climatic settings were examined in this study, fig. 1. Four basins 
were from dry climatic regimes (San Pedro, Arizona; Cimarron, Oklahoma; 
middle Nueces, Texas; mid-Rio Grande, Texas and Mexico) and two basins from 
a humid climatic setting (Alapaha, Georgia; Upper Tar, North Carolina). Specific 
details on basin characteristics are provided in Tobin and Bennett [5–8]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Location of six examined watersheds with up to 5 x 5o grid boxes in 
which precipitation autocorrelation was examined. 

     This paper utilizes two types of both ground and satellite precipitation 
products. The two satellite precipitation products that were examined in this 
study are TMPA-RT and CMORPH. These are considered "real-time" products 
with a minimal latency on the order of one day or less that can potentially 
support near real-time hydrological modelling.  Both TMPA-RT and CMORPH 
are pure satellite products, with no ground rain gauge bias correction. TMPA-RT 
combines passive microwave (PMW) and infrared (IR) precipitation estimates 
from all available satellites, Huffman et al. [9]. The TMPA-RT utilizes PMW-
calibrated IR based rainfall to fill PMW coverage gaps. CMORPH is similar to 
TMPA-RT in that CMORPH merges satellite precipitation data from both 
infrared and microwave sensors (Joyce et al. [10]).  Unlike TMPA-RT, 
CMORPH is based on high resolution IR that infers motion of rainfall patterns in 
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order to obtain a smooth morphing of PMW rain patterns between PMW 
snapshots. All precipitation products are aggregated to a daily time interval 
providing primary input for hydrological validation effort described below. 
     Ground precipitation data includes NWS MPE, which merges precipitation 
data from several sources (radar, rain gauge, and passive infrared satellite) and 
National Weather Service (NWS) daily rain gauge data. The primary data source 
for the MPE product was hourly NWS Next-Generation Radar (NEXRAD) Stage 
III data, which covers the area of a US River Forecast Centre. Additional bias 
corrections were applied using daily NWS rain gauges.  Geostationary 
Operational Environmental Satellite (GOES) passive infrared data was employed 
to minimize truncation errors in the Stage III processing system associated with a 
lack of radar coverage in a given area within a river forecast centre zone of 
responsibility. MPE data is aggregated to a 0.25o x 0.25o spatial resolution, 
which corresponds exactly with satellite grid cells and forms the basis for 
baseline adjustment of satellite products as described below. 
     All NWS rain gauges with complete or nearly complete (missing fewer than 
10 records for period of study, 2003 to 2008) were obtained out to a radius of up 
to 3.0o away from the centroid of the six watersheds.  The number of rain gauges 
varies for each watershed (San Pedro, n=15; Cimarron, n=32; middle Nueces, 
n=25; mid-Rio Grande, n=25; Alapaha, n=21; Upper Tar, n=52). Rain gauge 
data is used to adjust satellite precipitation data and supports a series of 
streamflow simulations that evaluate how spatial transfer distance of the ground 
dataset used to adjust satellite data impacts model streamflow results.  

3 Methodology 

3.1  Adjustment method 

Ground based adjustment of satellite products is currently needed to support 
hydrological modelling applications over large regions of the planet. The above 
statement is especially true for the six watersheds examined in this study where 
both TMPA-RT and CMORPH have unrealistic values compared with ground 
based precipitation data, see Tobin and Bennett [5–8]. 
     This study utilizes the precipitation adjustment methodology developed by 
Tobin and Bennett [5, 6], which adjusts satellite products with ground-based 
precipitation data. The approach is not a simple bias adjustment, but is a three-
step process that transforms a satellite product based on a ground-based 
precipitation data. Ground-based precipitation (MPE, NWS Rain Gauge), which 
had a detection limit (0.254 mm), is used to develop a filter eliminating FAR in 
our adjusted product. Only ground-based values above detection limit were 
considered positive for precipitation on a given date. For baseline adjustment 
aggregated MPE values that match exactly the satellite products grid cell were 
used and to examine spatial transfer distance rain gauge data facilitated the 
adjustment process. Failure of precipitation detection (POD) was addressed by 
utilizing ground-based products during these periods in our adjusted product. 
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The ultimate result was the transformation of the satellite data into a product that 
has a perfect equitable threat score (ETS = 1.00).  
     Correction for bias present in the pure satellite products was facilitated by 
transformation of the probability distribution frequency (PDF) of satellite 
product into the PDF of the ground-based precipitation product. The PDF's of 
both satellite and ground products were calculated based on curve fitting with 
mixed exponential functions, which is an approach developed by Foufoula-
Georgiou and Lettenmaier [11]; Wilks [12]; and Woolhier and Roldan [13]. 
Tobin and Bennett [5] provide additional details on the bias adjustment 
methodology utilized in this study but in brief determination of adjusted satellite 
product was determined by simultaneously solving satellite product and ground-
based precipitation curve fit equations at the exceedence probability based on the 
satellite product for a given date. 

3.2 Streamflow simulations 

This study compares precipitation products in terms of their ability to support 
streamflow simulations at the scale of moderately large basins of greater than 
1,000's km2. The semi-distributed hydrologic model selected for this study was 
the Soil and Water Assessment Tool (SWAT), which is a physically based model 
with demonstrated global applications and has been validated at the watershed 
scale through the publication of hundreds of referred papers, see Gassman et al. 
[14]. Details on model set-up and calibration approach are provided in Tobin and 
Bennett [5–8]. 
     For each watershed two model sets of SWAT simulations, identical except for 
daily precipitation input, were executed based on the two precipitation types 
(Adjusted TMPA-RT, Adjusted CMORPH). Baseline adjustment simulation was 
completed with MPE aggregated to exactly match the 0.25o x 0.25o grid cells of 
the satellite products. Simulations examining spatial transfer distance were 
completed using NWS rain gauge data to facilitate the adjustment process as 
describe above. For each simulation a warm-up period of approximately one-
year was utilized to initialize the model. Model results were based on four-year 
simulations (2004-2007) except for the San Pedro Basin in Arizona where outlet 
streamflow data availability forced us to establish a simulation period spanning 
October 1, 2005 to December 31, 2008 for this basin. Two measures were used 
to quantify the goodness of fit of simulated streamflow relative to observed 
values and include mass balance error (MBE) and Nash-Sutcliffe efficiency 
coefficients (NS). 
 

  
(1) 

 

  
(2)
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where Qobs,a is the average observed streamflow. Additionally, Qsim,i and Qobs,i are 
the simulated and observed surface runoff at the ith observation, respectively and 
N is the number of observations. Acceptable simulations have surface runoff that 
is within 25% (MSE) of actual surface runoff values with NS values > 0.50 
(Moriasi et al. [15]). Negative NS values indicate that simulated data performs 
less than if the average of the observed values was utilized when comparing the 
efficiency of observed and simulated values. 
     In order to compare numerous simulations between the six basins and two 
sets of satellite products examined in this study, a relative performance scale 
(RPS) was established based on MSE and NS values (Table 1). A perfect match 
between observed and simulated streamflow was equivalent to a relative value of 
4.00. A marginal simulation has a RPS value of 1.00. The worst value of the 
MSE or NS was utilized to assign the RPS value. For example, streamflow with 
a MSE = 5% and a NS = 0.75 was assigned a relative performance value of 3.00, 
which was based on the NS value in this instance that is very good whereas the 
absolute MSE value is midway between excellent and very good (Table 1).  

Table 1:  Relative performance scale (RPS). 

Description NS Absolute MSE RPS Value 
Perfect 1.00 0 % 4.00 

Very Good 0.75 10 % 3.00 
Good 0.65 15 % 2.00 

Satisfactory 0.50 25 % 1.00 
Mean Simulated  0.00 50 % 0.00 

Poor -1.00 100% -1.00 
Very Poor -2.00 200% -2.00 

Extremely Poor -3.00 400% -3.00 

3.3 Analysis of precipitation and streamflow data 

Streamflow simulations for each adjusted precipitation type and basin were 
examined with geostatistical and statistical methods. The geostatistical approach 
used to evaluate the spatial autocorrelation of bias, probability of detection 
(POD), and false alarm rate (FAR; defined in [2]) of TMPA-RT and CMORPH 
products is Ordinary Kriging, which has commonly been used to examine spatial 
trends in precipitation. Spatial correlograms for precipitation data from each 
basin were derived and the correlation length, where the auto-correlation 
dropped to 1/e (e-folding distance), was then determined. The next step involves 
generation of the empirical semi-variograms and calculation of the idealized as 
exponential semi-variogram functions before implementing the Ordinary Kriging 
procedure as follows: 
 

 (h)  co  c(1 eh /a )  (3) 
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where (h) is the semi-variance at spatial lag ‘h’; c0 is the nugget variance (i.e., 
the minimum variability observed or the ‘noise’ level at the smallest separating 
distance equals 0); c is the sill variance when spatial lag is infinite; and a is the 
correlation length. Significant auto-correlation was deemed acceptable if a 
clearly discernable range distinct from the sill was noted in the semi-variogram. 
Finally, RPS from streamflow results are plotted against spatial transfer distance 
and linear correlation (r2) from the resulting cross-plots were determined.  

4 Results 

Table 2 illustrates the relative proportion of bias, false alarms, and missed 
precipitation events in the adjusted precipitation product.  The contribution of 
bias forms the dominant attribute within all adjusted satellite products for all 
basins expect for the San Pedro watershed where correction for false alarms is 
nearly as important as bias.  

Table 2:  Misses, false alarms, and bias in adjusted satellite products. 

Basin Satellite Product Misses  False Alarms  Bias  
Alapaha TMPA-RT 8 - 10 % 4 - 5 % 87 - 90 % 
Alapaha CMORPH 3 - 4 % 6 - 7 % 89 - 92 % 
Upper Tar TMPA-RT 7 - 12 % 4 - 6 % 83 - 87 % 
Upper Tar CMORPH 5 - 8 % 8 - 11% 83 - 86% 
San Pedro TMPA-RT 15 - 19 % 33 - 45 % 37 - 51% 
San Pedro CMORPH 7 - 12% 31 - 38% 52 - 59% 
mid-Rio Grande TMPA-RT 9 - 16 % 7 - 17 % 67 - 83 % 
mid-Rio Grande CMORPH 8 - 14 % 15 - 18% 72 - 77 % 
Nueces TMPA-RT 6 - 12% 7 - 11% 78 - 85 % 
Nueces CMORPH 4 - 8 % 4 - 17 % 77 - 90 % 
Cimmaron TMPA-RT 5 - 9 % 5 - 8 % 85 - 88 % 
Cimmaron CMORPH 4 - 8 % 11 - 14 % 78 - 83 % 

 
     Fig. 2 indicates how streamflow simulations based on adjusted TMPA-RT 
precipitation data vary as a function of spatial transfer distance. Likewise fig. 3 
illustrates impact of spatial transfer distance for CMORPH based streamflow 
simulations. Baseline simulation at a spatial transfer distance of 0o is based on 
using MPE data in the adjustment process; whereas all other simulations were 
based on rain gauge adjustments.  
     Eleven of the twelve model sets demonstrate a decrease in simulated 
streamflow response as spatial transfer distance increases.  The trend for most 
model sets was generally linear. For the San Pedro Basin, both TMPA-RT and 
CMORPH model sets have non-linear relationship can be explained by the 
complex geography in this region where rain gauges from the dry lowlands 
provide a better adjustment to satellite data with streamflow RPS values in 
excess of 3.0. Conversely, especially to the north of the San Pedro Basin rain 
gauges record much higher precipitation values resulting in an adjusted satellite 
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Figure 2: Streamflow simulations based on adjusted TRMM-RT precipitation 
data. (A) San Pedro Basin, Arizona; (B) Cimarron Basin, Oklahoma; 
(C) mid-Rio Grande Basin, Texas and Mexico; (D) middle Nueces 
Basin, Texas; (E) Upper Tar Basin, North Carolina and (F) Alapaha 
Basin, Georgia. 
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Figure 3: Streamflow simulations based on adjusted CMORPH precipitation 
data. (A) San Pedro Basin, Arizona; (B) Cimarron Basin, Oklahoma; 
(C) mid-Rio Grande Basin, Texas and Mexico; (D) middle Nueces 
Basin, Texas; (E) Upper Tar Basin, North Carolina and (F) Alapaha 
Basin, Georgia. 
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product with unrealistically high precipitation totals that translates into lower 
streamflow RPS values. The Alapaha CMORPH model set, see fig. 3f, actually 
has a slight increase in streamflow RPS with increasing spatial transfer distance; 
although this trend is not statistically significant. 
     Table 3 illustrates spatial autocorrelation for satellite precipitation 
performance metrics (Bias, POD, FAR) compared with aggregated MPE that 
directly corresponds with satellite products over a up to 5 x 5o grid surrounding 
the examined watersheds, fig. 1. In terms of bias, for the Oklahoma, Texas, and 
Georgia grids e-folding distance for both TMPA-RT and CMORPH range 
between 1.1 to 1.9 degrees. North Carolina has insignificant autocorrelation for 
bias. Arizona has insignificant autocorrelation for FAR and bias for the TMPA-
RT product whereas CMORPH has e-folding distances that range from 1.4 to 3.2 
degrees for bias and FAR. 

Table 3:  E-folding distance for satellite precipitation performance metrics. 
E-folding units are based on one degree (1.0).  

Basin Satellite Product      POD    FAR       Bias 
Oklahoma TMPA-RT 1.4 4.2   1.9 
Oklahoma CMORPH 3.2     1.9        1.1 

Texas TMPA-RT 2.9     2.6        1.2 
Texas CMORPH 3.0     2.7        1.4 

Georgia TMPA-RT None     4.0        1.9 
Georgia CMORPH 1.7     2.7        1.3 

North Carolina TMPA-RT 4.4     0.6  None 
North Carolina CMORPH 0.8   None  None 

Arizona TMPA-RT       1.3 0.7  None 
Arizona CMORPH       2.1     1.4   3.2 

     Examination of y-intercept and slope of regression lines from figs. 2 and 3 
provide additional insights. The y-intercept is an indication of the RPS value for 
a simulation at a spatial transfer distance of zero based on the trends in the model 
sets. The slope indicates the decrease in RPS performance as a function of spatial 
transfer distance. Fig. 4A provides a plot of y-intercept and slope for the twelve 
model sets. Two regression lines are indicated, which are similar, with one line 
including all twelve model sets and the second line omitting model sets that do 
not have a significant statistical correlation. Both regression lines are statistically 
significant determined with a one-tailed t-statistic at a p=0.05. These regression 
lines indicate that as the y-intercept decreases the slope (or the decrease of RPS 
per degree of latitude/longitude) also decreases.  

5 Discussion and significance 

Figure 4B provides an answer to the question of how streamflow performance 
deteriorates as a function of spatial transfer distance for the adjusting precipitation 
data set. For a streamflow simulation to be acceptable they must have a RPS value 
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of 1.00. The higher the RPS value of the baseline simulation where ground based 
precipitation data exactly matches satellite products the longer the spatial transfer 
distance is permissible. The preliminary results presented in this paper indicate that 
for baseline simulations that are good (RPS = 2.00), very good (RPS = 3.00), and 
excellent (RPS = 4.00) that tolerable spatial transfer distances are 0.9+0.3o, 
1.3+0.4o, and 1.5+0.5o, respectively. While these precise values may not apply to 
every basin, this study strongly implies that ground-based precipitation data can be 
utilized over spatial transfer distances comparable to e-folding distance of satellite 
precipitation performance metrics, most notably bias and FAR. As such this 
contribution provides guidance for how satellite precipitation products can be 
adapted for local applications in poorly monitored regions of the world. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: (A) Y-intercept of regression lines against decrease in RPS per 
degree from figs. 2 and 3. Gray symbols represent regression lines  
(from figs. 2 and 3) that do not have statistically significant 
correlations. Thin regression line includes all sets of simulations and 
thick line omits simulation sets that do not have a statistically 
significant correlation. (B) Relationships between monthly RPS of 
baseline simulation where ground based precipitation data exactly 
matches satellite products and spatial transfer distance in degrees. 
Envelop for data set is based on two standard deviations of the 
standard error. 
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