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Abstract 

Bottom friction modelling is an important step in river flows computation with 
1D or 2D solvers. It is usually performed using empirical laws established for 
uniform flow conditions or a modern approach based on turbulence analysis. 
     Following the definition of the flow validity field of the main friction laws 
proposed in the literature, an original continuous formulation has been 
developed. It is suited to model river flows with a wide range of properties 
(water depth, discharge, roughness…).  
     The efficiency of this new formulation, theoretically established and 
numerically adjusted, is demonstrated through various practical applications. 
Keywords: shallow water, bottom friction, empirical laws, modern laws. 

1 Introduction 

Shallow Water equations are commonly used to model numerically river flows. 
Indeed, their main assumption states that the flow velocity component normal to 
the main flow plane is smaller than the flow velocity components in this plane. 
This is the case for the majority of river flows where vertical velocity component 
is negligible regarding the horizontal ones, except in the vicinity of singularities 
such as weirs for example. 
     This paper focuses on bottom friction modelling in such mathematical 
models. This effect is indeed of very high importance for real flow computation 
despite it is generally evaluated from empirical formulations experimentally 
determined for uniform flow conditions. 
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     The bottom friction term should represent the whole of the energy losses 
induced by the friction of the fluid on the rough river bed. It is thus related to the 
bed characteristics (shape, roughness), to the fluid characteristics (viscosity) and 
to the flow features (water height, velocity).  
     The concept of friction slope [1] has been early used to characterize bottom 
friction. It is a non-dimensional number corresponding to the slope of a uniform 
channel where a uniform flow establishes for a given discharge. This concept is 
at the basis of the first friction laws proposed in the second part of the 18th 
century by the researchers of the so called “empirical” school. Authors such as 
Chézy [2] and Manning [3] proposed laws based on experimental results 
consisting in measuring the friction slope for a number of idealized flows in a 
laboratory flume. A second approach appeared later following works of Prandtl 
[4]. It provided laws issued from analysis of the physics of the shear layer 
phenomena, referred to as the “modern” school. 
     Today, both approaches are used by free surface flow modellers, and these 
laws are sometimes applied to flow conditions far from those on the basis of 
which they have been developed. It is thus important to keep in mind the validity 
ranges of each of these laws and to underline the lack of a single formulation 
able to describe the bottom friction phenomena for largely variable flow 
conditions. 
     The aims of the developments presented in this paper were to define and 
validate an original continuous formulation for bottom friction, contributing to 
filling this lack. 

2 Main friction laws 

2.1 Empirical laws      

The laws of the so called “empirical” school have all been developed on the basis 
of experimental tests. These tests consisted in measuring the slope of a uniform 
channel where a uniform flow can be obtained [1]. In these flow conditions, the 
effects of bottom friction are exactly counterbalanced by the gravitational forces. 
Thus the friction slope is equal to the bottom slope of the channel and simple 
formulae can be set up to link the channel roughness, the flow variables and the 
bottom slope. Replacing the bottom slope by the friction slope, the friction 
effects can be computed for other flow conditions than the uniform ones. 
     The general form of empirical friction formulations writes:  

 hRJU 21             (1) 

     It relates the friction slope J to hydraulic and geometric parameters affecting 
the bottom friction such as U the mean flow velocity, α a friction coefficient and 
Rh the hydraulic radius. This last parameter reflects the effect of the cross section 
shape. 
     The differences between the different friction formulations of the empirical 
school are in the χ exponent value and in the α coefficient form. 
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     It is important to note that these formulations do not explicitly take into 
account the turbulence regime of the flow, despite it is well known that this flow 
state is of great influence on the friction losses. 
     Chézy [2] and Manning [3] formulations are the most widely used empirical 
friction laws because of the extensive knowledge of the friction coefficient α 
available in the literature for both of them. Others exist, such as the laws of 
Gauckler, Forchheimer, Christen, Hagen and Tillman [1]. They differ only by the 
exponent of the hydraulic radius in the general formulation (1) as shown in 
table 1. 

Table 1:  Value of  exponent of the hydraulic radius for different empirical 

friction formulations. 

Author χ 
Chézy 0.5 

Manning 0.667 
Gauckler 0.4 

Forchheimer 0.7 
Christen 0.625 
Hagen 0.714 

Tillman 0.7 

2.2 Modern school 

In contrast with empirical laws, formulations from the modern school rely on a 
sound theoretical background on the physics of friction phenomena [1]. 
     The developments of the modern school appear one century later than the first 
empirical developments. Under the leadership of Prandtl, researchers from the 
University of Göttingen (Germany) developed formulations of a friction 
coefficient, λ, function of the turbulence of the flow through the Reynolds 
number Re, and the size of the roughness elements of a pipe, k.  
     Modern formulations have been initially developed for pressurized flows to 
determine head losses in pipes. 
     The Darcy-Weisbach relation [5] links the friction slope J to the friction 
coefficient λ: 

g

U

R
J

h 24

2
               (2) 

where 4 Rh is the equivalent diameter of a channel and g is de gravity 
acceleration. 
     In 2D flow modelling, the hydraulic radius Rh is equivalent to the water depth 
h. In the rest of this paper, both expressions will be used similarly. 
     The friction coefficient λ evaluation depends on the flow turbulence regime, 
and thus the Reynolds. The main modern laws are shown in table 2 and classified 
depending on the flow turbulence regime. 
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     Developments on macro-roughness are more recent and are directly related to 
the development of hydrological modelling. They are associated to the modern 
school because of the similar form of the mathematical formulations. 

Table 2:  Main modern laws for friction coefficient depending on the flow 
turbulence regime. 

Flow 
turbulence 

regime 
Author Law 

 
Theoretical 

validity 
range 

Laminar 
Poiseuille 

[6] Re

64
                    (3) Re < 5000 

Smooth 
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Prandtl [4] 
 Re

.
log
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1
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Colebrook 
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
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k
log

512

814
2
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2240/Re 
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Nikuradse 
[8] h.

k
log

814
2

1



      (6) k/h > 

2240/Re 

Macro-
roughness 

Bathurst 
[9] h

k

15.5
log987.1

1



  (7) k/h > 0.25 

 
     The implicit character of some modern equations gives them an uneasily use. 
That’s the reason why different authors developed explicit equivalent 
formulations, such as Barr [10] who provides an explicit form of the Colebrook 
formulation (5), with less than 1% error on the friction coefficient values: 
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3 Validity fields of the mean friction laws 

On one hand, the empirical laws have not been developed regarding the variation 
in turbulence regime of real water flows. On the other hand, modern laws take 
better into account the turbulence regime of the flow but none of them can be 
applied to the whole flow conditions of real river flows. It is thus important to 
keep in mind the validity fields of the different friction laws, as defined in [11] 
function of their practical use. These validity fields are shown in terms of 
relative roughness in the table 3. 

Table 3:  Validity fields of the principal friction laws in terms of relative 
roughness [11]. 

Author Practical validity range (k/h) 
Chézy Near 0 

Christen [0 ; 0.032] 
Manning [0.007 ; 0.1] 
Tillman [0.023 ; 0.29] 
Hagen [0.034 ; 0.38] 

Gauckler No validity 
Poiseuille Only laminar 

Prandtl Near 0 
Colebrook [0 ; 0.1] 

Barr [0 ; 0.1] 
Nikuradse [0 ; 0.1] 
Bathurst [0.1 ; 5.15] 

 

     Today, the empirical laws of Manning and Chézy are the most widely used 
formulations for friction modelling. This success comes from their simplicity of 
use and the large existing literature on their parameters values. However, the 
modern laws are more representative of the physics of bottom friction. 
Furthermore, explicit forms of the modern laws exist such as the one of Barr (8). 
The modern laws have thus an important interest for flow modelling. 
     In practice, other losses, such as those due to the turbulence, are included in 
the friction term used by most flow solvers. In this case, it is then important to 
keep in mind that the friction slope J terms in the mathematical model not only 
represents the bottom friction phenomenon. 

4 Continuous friction formulation 

As shown in table 3, no single formulation is suitable to compute friction effects 
on the whole range of relative roughness encountered in real river flow, where h 
goes from 0 on the banks to several meters in the channel centre with an 
essentially constant roughness height k. However, the k/h validity ranges of 
several laws are contiguous such as for example for Colebrook or Barr and 
Bathurst. 
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     Therefore, an original approach has been developed on the basis of the three 
following statements: 

 Barr formula applies for turbulent flows with relative roughness k/h 
lower than 0.1. 

 Bathurst formula applies to compute friction effect on macro-roughness, 
i.e. for k/h higher than 0.1. 

 But these two formulations are not equal for a relative roughness k/h in 
their respective validity fields. 

     Developments have been performed to link continuously these two 
formulations close to relative roughness k/h equal to 0.1 [11]. They finally lead 
to the following expressions which can be used to compute continuously the 
bottom friction effects in rivers or channels whatever the value of k/h: 

formulaBathurst  : 150For  

22589983382761469
1

: 150050For 

formulaBarr  : 050For 
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  (9) 

5 Validations 

5.1 2D approach 

Two Belgian river reaches were considered to validate the continuous approach: 
the Ourthe near the town of Hamoir and the Semois near Membre, fig. 1. These 
two reaches, respectively 2.6 km and 1.6 km long, were selected because of the 
presence of two gauging stations on both of them. The downstream one 
combined with the discharge measurement provides the necessary boundary 
conditions. 
     Both river reaches have been modelled using the 2D-horizontal finite volumes 
flow solver WOLF2D, developed at the University of Liege [12], using different 
friction laws such as Manning, Barr, Bathurst and continuous formulations, with 
a regular 2 x 2 m mesh. 
     The comparison between the upstream water depths computed using the laws 
of Barr, Manning, Bathurst and the continuous formulation, and the water depth 
measurements at the upstream gauging station for different discharges has been 
used to show the interest of the continuous formulation , fig. 2 and 3, and table 4. 
     It must be noted that the computation time remains similar whatever the 
friction law. 
     The Manning’s coefficient n value, which is the inverse of the α coefficient of 
equation (1), was fitted regarding the real data for the highest discharge. It is 
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equal to 0.025 s/m1/3 in the Ourthe and to 0.031 s/m1/3 in the Semois. The 
constant k value for Barr, Bathurst and continuous formulations was set up to get 
close to the measurements for both the lowest discharge with Bathurst 
formulation and the highest one with Barr equation. Its value is 0.09 m in the 
Ourthe and 0.3 m in the Semois. 
     The water depth is not homogeneous along the river reaches. The k/h ratio 
indicated in table 4 is thus the ratio value at the upstream limit of the river 
reaches, at the centre of the cross section. That’s the reason why the results 
provided by the continuous formulation are not exactly equivalent to those 
provided by the Barr and the Bathurst formulations, respectively for k/h < 0.05 
and k/h > 0.15.  
 

   

Figure 1: Numerical representation of the topography of the Ourthe River 
near Hamoir and the Semois River near Membre and location of 
the gauging stations. 

     On the Ourthe River, for k/h ratios lower than 0.05, the water depths 
computed using Manning, Barr and continuous formulations are relatively close 
to the measurements (less than 2.5%), whereas the Bathurst results are less 
satisfactory (more than 10% error). This expresses well the validity of Barr and 
continuous formulations for 2D free surface flow with low relative roughness 

Tabreux 
(Water depth, discharge) 

Membre upstream 
(Water depth) 

Membre 
(Water depth, discharge) 

Hamoir 
(Water depth) 
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Figure 2: Computed and measured rating curves in Hamoir on the Ourthe 

River. 
 

 

Figure 3: Computed and measured rating curves in Membre on the Semois 
River. 

modelling. This also expresses the efficiency of the Manning’s formulation for 
flow conditions close the validation ones. Finally, this confirms that Bathurst 
formula does not apply for low relative roughness, as shown in table 3. 
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Table 4:  Mean relative error between measured and computed water 
depths (%). 

Situation Modelling law k/h <0.05 
0.05 < k/h < 

0.15 
k/h > 0.15 

Hamoir 
– Ourthe 

Manning 0.9 14.3 30.6 

Barr 1.5 13.1 26.1 

Bathurst 11.1 4.0 9.8 

Continuous  formulation 2.3 6.4 10.3 

Membre 
- Semois 

Manning - 5.9 33.9 

Barr - 5.5 29.5 

Bathurst - 5.3 15.9 

Continuous formulation - 1.7 16.0 
 
     For k/h ratios higher than 0.15, the water depths, provided using Bathurst and 
continuous formulations, are the closest to the measurements. The important 
value of the relative error is partially due to the important effect of measurement 
uncertainty for low water depths. Indeed, water depth measurements accuracy is 
close to 5 cm in these cases. However, the results show the interest of Bathurst 
and continuous formulations, compared to Manning and Barr ones, for flow 
modelling on high relative roughness. They also show the limitations of the Barr 
formulation for high relative roughness and of the Manning’s one when flow 
conditions differ from the validation conditions. 
     For intermediary k/h ratios, Bathurst formulation remains attractive when the 
water depths have a low variability on the river reach such as on the Ourthe 
River. However, when the water depths are more variable, such as on the Semois 
River, the continuous formulation becomes more accurate. 

5.2 1D approach 

Based on water depth and discharge measurements and considering a uniform 
flow, Martiny [13] determined the α coefficient of Manning equation (1), best 
known as Strickler coefficient K, for a number of Belgian rivers. The uniform 
flow hypothesis is inaccurate for low water depth. From Martiny’s results, three 
cases, corresponding to the largest rivers studied, have thus been considered: the 
Warche River in Thioux as well as the Ourthe River in Wyompont and in 
Amberloup. For these three places, Martiny calculated K values depending on 
the water depth. 
     To compare Martiny’s results with those provided by the continuous 
formulation (9), Strickler coefficient was expressed as a function of the friction 
coefficient λ. This was obtained by insertion of Manning equation (1) in Darcy-
Weisbach relation (2): 
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     Considering the λ value provided by continuous formulation (9), equation 
(10) gives the value of the Strickler coefficient to use for an exact modelling of 
the continuous friction formulation. Fig. 4, 5 and 6 show the comparison 
between Martiny’s results and those provided by equation (10) considering a 
particular bottom roughness for each river reach. 
 

 

Figure 4: Strickler coefficient value in Thioux on the Warche River. 

 

Figure 5: Strickler coefficient value in Wyompont on the Ourthe River. 
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     In the three cases, the mean relative error on the K value provided by the 
continuous formulation remains lower than 5%.  
     This comparison highlights thus the ability of the continuous formulation to 
describe the friction phenomenon for 1D flow modelling with a single roughness 
value while the Manning formulation with a single K value is only suited to 
model the friction for a particular flow.  
 

 

Figure 6: Strickler coefficient value in Amberloup on the Ourthe River. 

6 Conclusions 

Friction is a complex phenomenon with a non negligible influence on river flows 
characteristics. It is thus necessary to take it into account for a correct flow 
modelling. Many authors have developed friction formulations. But these laws 
are not always suited to describe the friction phenomenon in the whole range of 
real varied flow conditions. 
     In this study, an original friction law has been developed to fill the lack of a 
continuous law able to describe the friction phenomenon for the highly variable 
flow conditions often met in river flows.  
     This law has been validated for 2D modelling by comparison of water depth 
values on two different river reaches in Belgium and for 1D modelling by 
comparison of experimental investigations on three Belgian river reaches.  
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