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ABSTRACT 
This contribution analyses the spatial support of sampling points used to express the presence or 
absence of NO3

ˉ pollution in the water table. A spatial database constructed for the assessment of ground 
water vulnerability is re-analysed with a different predictive strategy. In practice, a case study area 
surrounding the city of Milan in northern Italy becomes an opportunity to point at a very general 
prediction modelling problem in which the basic direct evidence of a process is obtained only by 
sampling with point like measurements of nitrate concentration, as the ones from drill holes or water 
wells. The main questions are: “What is the functional spatial support for the modelling?” and “What 
happens if different spatial supports are assumed?” The answers to these questions are counterintuitive. 
Over the area of study of about 2,000 km2, the distribution of 305 water wells delimits a training area 
in which 133 wells are considered as impacted by nitrate pollution, i.e., direct supporting patterns of 
the modelling. The remaining 172 wells are considered as non-impacted. In the training area, nine 
natural and anthropogenic map data are assumed, as indirect supporting patterns of the modelling, to 
reflect both the potential source of nitrates and the relative ease in which nitrates may migrate in ground 
water. They cover the entire area of study. A mathematical model is used that computes spatial 
relationships between the direct and indirect supporting patterns based on empirical likelihood ratios. 
The relationships are integrated into prediction patterns and, by iterative cross-validations, into target 
and uncertainty patterns. These are then extended from the training area over the remaining much larger 
study areas for analysis and visualization. Square neighbourhoods of dimensions 20 × 20 m, 60 × 60 m, 
180 × 180 m and 1,020 × 1,020 m around the 305 wells are used to delimit four training areas of different 
sizes. Surprisingly, the smaller spatial support appears as the most reliable.  
Keywords:  aquifer vulnerability, nitrate pollution, empirical likelihood ratios, spatial support, 
prediction patterns, uncertainty patterns, prediction-rate curves. 

1  INTRODUCTION 
This contribution focuses narrowly on the effect of spatial support of the sampling points 
used to express the presence or absence of NO3

ˉ pollution in the water table. A spatial 
database constructed for the prediction of ground water vulnerability is reanalysed using 
different assumptions on the relationships between water well concentrations of nitrate. The 
study area of about 2,000 km2 is located around the city of Milan, in northern Italy and the 
corresponding database was studied by Masetti et al. [1] as a refinement of earlier works [2], 
[3], who thoroughly discussed the study area, its groundwater contamination problems and 
the database they constructed. Furthermore, those authors considered new analyses with 
different threshold values of nitrate concentration [4], [5]; the reliability of different 
vulnerability classification schemes [6]; and compared positive and negative weights for 
multiclass generalizations [7]. In those works, the weight-of-evidence model (WoE) was 
applied for vulnerability assessment. 
     Methodological discussions on some of those works [1]–[4] led to the generous provision 
of the database by the original authors for complementary modelling applications in a joint 
contribution [8]. In it, a different modelling framework and analytical strategy were 
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preferred: the empirical likelihood ratio (ELR) function and cross-validation for uncertainty 
assessment of prediction patterns. Use was made of the immediate vicinity of 305 available 
water wells measuring the concentration of NO3

ˉ in mg/l in a training area within the area of 
study. Of the wells, 133 were considered as “impacted” by nitrate pollution.  
     As a follow up to their analyses, the Milan area database becomes an opportunity to point 
at a very general prediction modelling problem in which the basic direct evidence of a process 
is obtained only by sampling a study area with point like measurements of nitrate 
concentration, as the ones from drill holes or water wells. The main questions are: “What is 
the functional spatial support for the modelling?” and “What happens if we assume different 
spatial supports?” 
     The next section offers a brief summary of the database and its initial purpose. The 
favourability modelling framework is then discussed along with the proposed strategies for 
characterizing, visualizing and cross-validating. Experiments follow on the four training 
areas to assess the effects of varying spatial support. For this, rank-based statistics, 
prediction-rate curves, prediction, target, uncertainty and combination patterns are obtained 
to characterize the training areas and their extension over the respective study areas. 
Concluding remarks follow with considerations on the importance of assuming realistic and 
functional spatial support for the water well distribution and values. 

2  THE MILAN AREA OF STUDY DATABASE 
Agricultural practices and industrial activities characterize the area of study around Milan in 
northern Italy, located as shown in Fig. 1. It covers nearly 2,000 km2 and its groundwater 
system has a complex hydrogeological setting with interaction of three aquifers [2]. The 
subsoil sediments represent important water resources. The studies by Masetti et al. [1] 
focused on the vulnerability of an unconfined aquifer that represents the most affected by 
contaminants from the surface activities. It is termed Traditional Aquifer and consists of  
 

 

Figure 1:    Distribution of 305 water wells in the Milan area of study. Red stars indicate the 
wells recording ≥ 25 mg/l of NO3ˉ; blue circles those recording < 25 mg/l. Sparse 
red stars among cluster of blue circles can be seen, as well as vice versa, 
indicating a noisy clustered distribution. 
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Pliocene-Pleistocene sediments. Transmissivity ranges from 5 × 10-2 to 1 × 10-3 m2/s, with 
permeability between 5 ×  10-3 and 1 ×  10-8 m2/s. Thickness ranges from 60–120 m. 
Components are gravel and sands and clay-silt layers that increase southward. Groundwater 
depth averages 30 m to the north of the area reducing to 5 m to the south. 
     Information on nitrate concentration was collected from over 300 water wells, unevenly 
distributed throughout the whole area, as shown in Fig. 1, to monitor four times a year the 
nitrate concentration that appears not sensitive to seasonality. Concentration varies between 
10 mg/l to the south and 70 mg/l to the north, with median value around 20 mg/l. The 
European Community Standard [9] set a guide value in soil of 25 mg/l.  
     Alberti et al. [2] and Masetti et al. [1] provided a detailed account of the absence of 
temporal trends and the differences between the northern and the southern parts of the area 
of study. They employed statistical analyses in their study of regional groundwater 
vulnerability to spatially relate measured contaminant locations with the distribution of 
natural and man-induced factor maps. For this, they have constructed a database consisting 
of impacted and non-impacted water wells selecting the study area and the following natural 
and anthropogenic factor maps listed in Table 1: groundwater recharge, land use, soil 
protection capacity, groundwater depth, groundwater velocity, main annual irrigation, 
nitrogen fertilizer loading, population density and rainfall. Table 1 also lists their short name 
abbreviations and value ranges. 

Table 1:    Wells, natural and anthropogenic factors in the Milan study area database 
(modified after [8]). Note the one-digit short names that will be used to identify 
the ISPs used for analysis. 

Water well data, area of study and direct supporting patterns (DSPs) 

Factor map name Short names Data range Description 

Impacted wells 
Non impacted wells 
Area of study 

133 
172 
AS 

1–133 
1–172 
1–0 

Index ≥ 25 mg/l NO3
ˉ 

Index ≤ 24 mg/l NO3
ˉ 

Area and out-of-area 
indicator

Categorical natural and anthropogenic factors 

Factor map name Short name Data range Description 

Ground water recharge 
 
 
Land use 
 
Soil protection capacity 

gwr, R 
 
 
ldu, L 
 
spc, S 

Classes 6–15 
 
 
Classes 1–3 
 
Classes 1–3 

Combination of raf and mai 
× a function of spc as 
infiltration coefficient 
Urban, agricultural and 
woods 
Low, moderate and high 

Continuous natural and anthropogenic factors 
Factor map name Short name Data range Description 
Ground water depth 
Ground water velocity 
Main annual irrigation 
Nitrogen fertilizer loads 
Population density 
Rainfall 

gwd, d 
gwv, v 
mai, i 
nfl, n 
pod, p 
raf, r 

1–51 
112–181 
0.1–1531.0 
0–428 
43–7933 
808–1253

m 
originally 10–20-ln (m/s) 
mm 
kg/h/y 
inhabitants/km2 
mm/y
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     In essence, the database for the Milan area of study used here consists of a set of 10 digital 
images contained within a raster of 3,300 pixels by 2,665 lines. Each pixel corresponds to a 
square of 20 × 20 m on the ground. Of the 8,794,500 pixels in the rectangular raster, only 
4,908,305 cover the area of study, and 3,886,195 are falling out of it. The distribution of the 
305 water wells, shown in Fig. 1, is represented as an image with 305 pixels with the values 
of NO3ˉ, ranging from a maximum of 71.0 mg/l to a minimum of 10.9 mg/l. Of those, the 
133 with value ≥ 25 mg/l were termed “impacted wells” while the 172 with value < 25 mg/l 
were termed “non-impacted wells”. Together the sets of impacted and non-impacted wells 
represent all that is known about nitrate concentration in the groundwater in the area of study 
so that their location distribution can be used to define training areas for the modelling. 
Within the training areas, the distribution of sequentially numbered impacted wells is 
converted into a direct supporting pattern, DSP, and used to establish spatial relationships 
with the images of natural and anthropogenic factors, converted into indirect supporting 
patterns, ISP. The relationships are then extended to the remaining study areas. 

3  FAVOURABILITY FUNCTION MODELLING 
The term “favourability function” was proposed [10] to refer to spatial modelling within a 
unified mathematical framework. Examples of interpretations that were considered are: 
Bayesian Probability, Certainty Factor, Dempster–Shafer Belief function and Fuzzy Logic. 
Their implicit assumptions were discussed along with their computations under different 
database conditions. In particular, integration rules for the models were discussed by Chung 
and Moon [11]. The ELR model has been thoroughly discussed by Chung [12] and it will be 
used here.  
     The modelling with the ELR function generates an image with integrated values ranging 
from 0 to infinity for each pixel, a prediction image. The array of relative integrated values, 
however, is difficult to interpret as such, so that a transformation is conveniently made of it 
into a prediction pattern. In this transformed version all values are ordered from highest to 
lowest and equal-area ranks are replacing the ratios for each pixel. “Pattern” is to refer to an 
artificial construct, i.e., a particular way of interpreting and displaying the results of 
modelling. “Prediction” is implying that it indicates areas in which future occurrences are 
likely to be found. DSP and ISP have already been defined. 
     To apply a model, all the known occurrences must be used first, in our case all the 133 
impacted sequentially numbered well locations, for instance. This should generate the most 
informed pattern. However, for interpreting it, the pattern’s ability to “predict” future 
occurrences, i.e. their location or distribution, needs to be studied. We then pretend not to 
know the location of some of the occurrences (“younger”), apply again the model using the 
remaining occurrences (“older”) as DSP, generate a new prediction pattern and then verify 
where in it the excluded occurrences are located: hopefully in the higher ranks of the pattern. 
Of course there are many ways to perform such a cross-validation, as we have termed it. 
Convenient iterative strategies are of excluding sequentially a few occurrences repeating 
modelling and cross-validation a number of times. Alternatively, sequential selection or 
random selection can be preferred. Clearly, the strategy can be tailored to the peculiarities of 
the available data. 
     Another critical aspect of spatial prediction modelling is the selection of a training area in 
which to establish the spatial relationships between DSP and ISP. This is because in it the 
relationships are considered either more accurate or more easily measurable. From the 
training area the relationships computed can then be extended to the remaining part of the 
area of study, termed study area. 
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     The visual expression of a prediction pattern can be generated by conveniently grouping 
200 equal area ranks into fixed and recognizable classes: for instance broader classes for 
lower ranks of lesser concern and narrower classes for higher ranks. Furthermore, for 
facilitating comparisons between predictions, the classes must remain the same for all 
subsequent results of the iterative cross-validations process. Iterations allow computing 
target patterns, uncertainty patterns and their combination patterns. For instance, using 
robust statistics such as median and range, we can obtain a target pattern with pixel values 
of the median rank of the prediction patterns generated by iterations. The values of the 
uncertainty patterns correspond to the rank of the ranges around the median of the target 
pattern. 
     The spatial relationships and their integration by a model do imply assumptions as to the 
data type available and to the specific mathematical model being used. Examples of data and 
model assumptions have been discussed in a previous work by Fabbri et al. [8] who used the 
very same Milan database. They do not need repeating here. We can just point at the 
following: (i) the assumption that the future occurrences of pollution will take place under 
conditions similar to the ones represented in the database; and (ii) that the indirect spatial 
support consists of conditionally independent factor maps. Assumption (i) represents our 
hope given that we consider as satisfactory, for the past and the future, the information 
collected in the database. Assumption (ii) is related with the representation and integration 
rules specific to many mathematical models that were initially formulated for non-spatial 
factors like medical symptoms for the prescription of medications or identification of 
diseases. In the geosciences, however, most frequently different thematic maps over the same 
area are hardly conditionally independent. It becomes of importance then to verify the 
dependence effects on the modelling. 

4  EXPERIMENTS ON TRAINING AND STUDY AREAS 
We can now formulate assumptions on the spatial support of the water wells: for instance, a 
pixel area of 20 × 20 m (1 × 1 pixels), of 60 × 60 m (3 × 3 pixels), of 180 × 180 m (9 × 9 
pixels) or of 1020 × 1020 m (51 × 51 pixels). Having analysed the distribution of the 305 
wells and their values, we have found that it is “dispersed”, i.e., the average distance of the 
wells is greater than a hypothetical random distribution. Distances range from 242 m to 3942 
m. The 133 wells are “clustered” and show a hot-spot to the NNE and a cold-spot to the SSW 
of the area of study, as visible in Fig. 1. There are numerous low–high outliers and a few 
high–low ones. 
     However, when gridded into 20 × 20 m pixels and used to identify target areas of 305 
pixel neighbourhoods containing 133 impacted pixel neighbourhoods, we have to discover 
what the spatial relationships within the database do contribute to the spatial modelling 
results as prediction patterns. To do that, four sets of training areas and study areas were 
computed from the database. They were termed Ta1, Ta3, Ta9 and Ta51, and the respective 
remaining parts, the areas of study, as Sa1, Sa3, Sa9 and Sa51. The training areas cover, 
respectively, the following number of pixels of 20 m resolution: 305, 2,745, 24,706 and 
761,161. The corresponding study areas cover complementary numbers. 
     The database consists of three types of factor maps: (i) well locations, (ii) categorical 
natural and anthropogenic factors, and (iii) continuous ones. They are described and short 
named in Table 1.  
     For each training area, the modelling applied consists of the steps described in the 
following sub-sections: (1) calculation of empirical likelihood ratios; (2) generation of 
prediction patterns later extended to the study areas; (3) computations of iterative cross-
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validations; and (4) generation of target, uncertainty and combination patterns later extended 
to the study areas 

4.1  Empirical likelihood ratios 

Table 2 lists the empirical likelihood ratio values, ELR, for the nine ISPs corresponding to 
the different training areas. Values are shown when > 1.5 for at least one ISP in one or more 
areas for comparison. In bold fonts are all values ≥ 2, a tentative value to threshold the ratios. 
A value of 1 indicates a frequency in the presence of impacted well identical to that in their 
absence within the training area. A value of 2 indicates a frequency twice that in the absence 
of an impacted well. The table filters the essential characteristics of likelihood ratio 
histograms for the three categorical ISPs and ratio functions for the six continuous field ISPs. 
We can consider the set of ratios as “signatures” of the training areas. The ELR model 
integrates for each pixel of a training area the empirical likelihood values of the nine ISPs. 
This generates a prediction image to be transformed into, and interpreted as, a prediction 
pattern. 

Table 2:   Empirical likelihood ratios for ISPs are listed for the different training areas. 
Mostly ratios > 1.5 are listed and when ≥ 2 they are in bold. Upper case letters 
with subscripts indicate the individual categorical map units. Numbers in italics 
indicate ranges of continuous field values with bracketed maximum value and 
ratio reached. Note that for spc all ratios are well below 1.5. 

ISP Ta ELRs (≥ 2 and > 1.5) 
gwr Ta1 
ldu 
spc 
gwd 
gwv *10 
 
mai *10 
 
nfl *10 
 
pod 
 
raf 

R81.78, R9 3.20; 
L2 1.29; 
< 1.50, S1, S2, S3; 
≥ 2 21.65–24.55 (23.15 max 2.43); 30.05–48.50 (39.95 max 4.03); 
≥ 2 120.59–127.40 (125.88 max 2.10); 163.02–164.00 (164.00 max 5.60); 
≥ 1 0.00–1424.74 (1.00 max 1.69); ≥ 2 6430.80–11528.62 (11298.99 max 
2.28); 
≥ 1 684.80–1264.62 (894.91 max 1.58); ≥ 2 2166.82–2235.80 (2199.93 
max 2.12); 2519.98–2602.65 (2553.09 max 2.16); 
≥ 2 2178.94–2546.76 (2320.91 max 2.17); 2946.83–5734.54 (4934.35 
max 322.85); 6244.34–6496.01 (6496.01 max 3.05); 
≥ 2 1057.81–1128.09 (1100.14 max 4.93). 

gwr Ta3 
ldu 
spc 
gwd 
gwv *10 
mai *10 
 
nfl *10 
pod 
 
raf 

R8 1.84, R9 3.04; 
L21.51; 
< 1.50, S1, S2, S3; 
≥ 2 21.75–24.45 (23.10 max 2.35); 30.40–48.40 (40.15 max 4.10); 
≥ 1 105.21–133.26 (117.45 max 1.60); 
≥ 1 0.00–1424.74 (1.00 max 1.69); ≥ 2 6430.80–11528.62 (11222.45 
max 2.29); 
≥ 1 2127.17–2931.82 (2461.01 max 1.63); 
≥ 2 3054.22–5688.01 (4942.29 max 35.10); 6251.26–7933.08 (7933.08 
max 7030.60);  
≥ 2 1086.14–1129.78 (1107.34 max 2.16). 
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Table 2: Continued. 

ISP Ta ELRs (≥ 2 and > 1.5) 
gwr Ta9 
ldu 
spc 
gwd 
gwv *10 
mai *10 
 
nfl *10 
pod 
 
raf 

R8 1.75, R9 3.17; 
L2 2.09; 
< 1.50, S1, S2, S3; 
≥ 2 21.80–24.25 (24.05 max 2.29); 30.05–48.10 (39.95 max 4.13); 
≥ 1 105.06–133.27 (117.44 max 1.59); 
≥ 1 0.00–1423.83 (15.31 max 1.67); ≥ 2 6430.22–11528.36 (7838.75 
max 2.30); 
≥ 1 2127.17–2931.82 (2461.01 max 1.63); 
≥ 2 3078.02–5688.01 (4942.29 max 34.89); 6251.26–7933.08 (7933.08 
max 7032.39); 
≥ 2 1085.75–1129.44 (1106.97 max 2.15). 

gwr Ta51 
ldu 
spc 
gwd 
gwv *10 
mai *10 
 
nfl *10 
pod 
 
raf 

R8 1.62, R9 3.38; 
L2 1.34; 
< 1.50, S1, S2, S3; 
≥ 2 21.35–23.90 (22.55 max 2.16); 29.85–45.55 (38.25 max 3.69); 
≥ 1 1.00–57.88 (max 1.70); 102.34–133.30 (116.92 max1.57); 
≥ 1 0.00–1224.00 (229.65 max 1.62); 6169.95–6445.53; ≥ 2 6460.84–
11513.05 (7348.82 max 2.20); 
≥ 1 2110.05–2863.34 (2362.57 max 1.82); 
≥ 2 3268.41–5703.87 (4942.29 max 41.06); 6338.52–7903.08 (7903.08 
max 4881.51); 
≥ 1 0.00–411.58 (248.95 max 1.70); ≥ 2 1085.86–1129.64 (1107.13 max 
2.16). 

 
     Comparing the ratios for the four training areas we can observe the following similarity 
and differences: (1) R9 is high, > 3 in all areas; (2) L2 is > 2 only for Ta9; (3) spc is low,  
< 1.5 in all areas; (4) gwd, mai, pod and raf are > 2 in all areas, however, raf is higher, 4.93 
in Ta1; and (5) gwv is > 2 only in Ta1.  
     These differences in ELR values appear as minor and we may expect similar modelling 
results. The likelihood values are characteristic properties of the spatial database, measuring 
the spatial relationships between DSP and ISPs in the training areas. We can consider the 
ratios in Table 2 as database signatures. The mathematical modelling, in our case by the ELR 
function model, will integrate the ratios for each point or pixel in the database, under a 
number of assumptions and following specific combination rules. Recall that the ratios range 
in values between zero and infinity and that the values are difficult to interpret. Having the 
signatures of the training areas we can now try to see their effects on the modelling of the 
respective prediction patterns. 

4.2  Prediction patterns 

ELR prediction patterns were obtained for the four training areas: 
ELR_Ta1_133_RLS_dvinpr to ELR_Ta51_133_RLS_dvinpr. They are named using the 
abbreviation of the mathematical model, ELR, followed by the identification of the training 
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area, the DSP of the impacted wells, and the list of categorical and continuous ISPs, as upper 
case and lower case abbreviations, respectively. 
     Because the images of the training areas consist of groups of single pixels or of small pixel 
neighbourhoods, their colour display is not informative, except for Ta51 where the 
neighbourhoods are larger, as done in Fig. 4(a) and 4(b). However, when using the modelling 
statistics from the training areas to extend it to the corresponding study areas, different 
prediction patterns are generated as follows (X indicates extension, and Sa the study areas): 
XLR_Sa1_133_RLS_dvinpr to XLR_Sa51_133_RLS_dvinpr. They are displayed in Fig. 
2. There we can see the similarity of selected ranks in the patterns and also some minor 
differences of particular relevance for the 10% highest classes of ranks. Note that the legend’s 
ranked classes are wider for lower ranks and narrower for higher ranks. The pseudo-colouring 
scheme goes from cold to warm colours but the class boundaries remain fixed in order to 
facilitate recognition and allow comparison.  
 

 

Figure 2:    Prediction patterns for study areas. XLR prediction pattern for Sa1 are in (A); 
for Sa3 in (B), for Sa9 in (C); and for Sa51 (D). Explanation is in text. 

     We can observe the following characteristics in Fig. 2: (1) greater compactness of colours 
in the prediction pattern in Fig. 2(a); (2) strong similarities of higher classes for the top 1% 
(purple) and top 5% (red to purple); (3) patches of high value colours to the west and the east 
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in Fig. 2(b), 2(c) and 2(d) (yellow to red); (4) altogether rather similar prediction patterns for 
the four study areas with a large hot area to the NNE of the city of Milan, the industrial zone. 
     At this point it becomes instructive to ask: How good are the prediction patterns as 
predictor of areas of future impacted wells? How stable and how certain? Clearly it has to 
depend on how good predictors are the patterns generated from the respective training areas, 
Ta1 to Ta51. So far we can only consider fitting rates of the impacted wells within the ranks 
generated using them as DSP. They do not provide any information on predictive capability. 
To obtain some measure of effectiveness in predicting we can use strategies of blind testing 
via iterative cross-validation of prediction patterns.  

4.3  Iterative cross-validations 

A number of strategies can be formulated all based on pretending to ignore some of the 
sample points available. In our case they are the 133 impacted wells (pixels or pixel 
neighbourhoods) and are critical for establishing the spatial relationships between DSP and 
ISPs. First we use all the 133 wells to generate the best or most informed prediction patterns, 
as shown in Fig. 2. Then we repeat the analyses by pretending not to know some relevant 
numbers of impacted wells. 
     For instance, in case of only a few tens of wells available, we can sequentially exclude 
one and use the remaining n-1 for modelling new prediction patterns. Then we validate them 
with the prediction rates corresponding to the excluded well locations. We can iterate the 
process n times to obtain n prediction rates, one per excluded impacted well. The distribution 
of the rates as ranks throughout those of the prediction pattern is obtained as a table and a 
corresponding prediction-rate histogram or cumulative curve. In Fig. 3, for instance, we have 
used the strategy of excluding 8 wells from the 133, using the remaining 125 for modelling 
in the iterative cross-validation process. This generates 16 prediction patterns each validated 
by 8 prediction rates. Another strategy used was of selecting at random 93 wells out of the 
133 (about the 70%) and repeating the modelling 16 times for the four training areas. That 
did generate results very similar to the ones in Fig. 3. 
     In the illustration the prediction-rate curves were calculated for the four training areas, 
Ta1 to Ta51. The diagram in Fig. 3(a) shows the relative proportion of training areas ranked 
as vulnerable in decreasing order on the horizontal axis and the corresponding cumulative 
proportion of impacted wells in the class on the vertical axis. Immediately it can be seen that 
the Ta1 prediction-rate curve is very steep. For Ta3 to Ta51 the curves are increasingly 
shallower. In addition, the histograms in Fig. 3(b), that consider just the top 20% ranks in 
classes of 4% of training areas, show a monotonically increasing histogram for Ta1, red 
columns, representing an acceptable classification of vulnerable areas. The blue columns, 
instead, show for Ta3 a non-increasing histogram, as well as for the corresponding 
histograms for Ta9 and Ta51, not shown here.  
     We can observe that the 100% of impacted wells (vertical axis) are ranked within the top 
2% for Ta1, the top 19% for Ta3, the top 82% for Ta9 and the top 85% for Ta51 (horizontal 
axis). The histogram for Ta1, in Fig. 3(b), indicates a good classification, with the higher 
equal area classes in 4% intervals and monotonically increasing columns towards higher 
ranks. 
     Which curve is the one representing a better prediction pattern? Is that because it contains 
more impacted wells at higher ranks? Or is it because the prediction pattern has less 
uncertainty associated?  
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Figure 3:    ELR prediction-rate curves and histograms. In (A) for the four training areas 
Ta1 to Ta51, obtained using the iterative cross-validation strategy of sequential 
exclusion of eight impacted wells out of 133. The process generates 16 
prediction patterns each cross-validated by eight excluded wells. The curves for 
Ta9 and Ta51 reflect nearly random distribution of ranks. In (B) are the 
histograms for Ta1, monotonically increasing, and Ta3, non-increasing. 

4.4  Target and uncertainty patterns 

To answer this type of question we can proceed to generate the 16 prediction patterns out of 
the 133 minus 8 × 16 strategies for the four training areas to generate target and uncertainty 
patterns as done in Fig. 4(a) and 4(b) for Ta51. In Fig. 4(c) and 4(d) for Sa51 we have 
extended the statistics obtained from Ta51 to Sa51. The target patterns in the illustration 
have been obtained from the set of 16 prediction patterns for Ta51. The median of the 16 
ranks (of the 16 patterns) is selected for each pixel and becomes the rank of the target pattern, 
as shown in Fig. 4(a) and 4(c).  
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Figure 4:    Target and uncertainty patterns for training and study areas. ELR target pattern 
for Ta51 is in (A); uncertainty pattern for Ta51 in (B), XLR target pattern for 
Sa51 in (C); and uncertainty pattern for Sa51 in (D). Explanation is in text. 

     Visually, the target pattern is very similar to the prediction pattern (compare Fig. 4(c) 
and Fig. 2(d)). However, the range of the 16 ranks represents an estimation of the uncertainty 
in the ranking. The wider is the range the more uncertain can the target patterns be considered 
and consequently also the initial prediction pattern. The same legend is being used for the 
illustrations of target and uncertainty patterns in Fig. 4. Obviously, the significance of the 
uncertainty ranks, in Fig. 4(b) and 4(d), is the reverse the one of the target ranks, in Fig. 4(a) 
and 4(c) For instance, we have selected the 50% lowest values from the uncertainty pattern 
to identify all the ranks in the target pattern (or the prediction pattern) corresponding to 
lower uncertainty. This produced the combination patterns shown in Fig. 5. Observe in Fig. 
5(d) the 50% combination pattern for Sa51, obtained combining the patterns in Fig. 4(d), 
uncertainty, with the one in Fig. 4(c), target pattern. We have applied median and range 
statistics here, due to its robustness, differently from the previous work [8] where the more 
sensitive mean and variance were tentatively used. 
     Evaluating and comparing uncertainty patterns is a complex issue, worthy of extensive 
research. The four 50% combination patterns in Fig. 5 show strong differences in the 
distribution of the ranks. All our modelling is based on relative measures and on ranking  
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Figure 5:    XLR 50% combination patterns of uncertainty and target patterns for four study 
areas. In (A) is for Sa1, in (B) for Sa3, in (C) for Sa9 and in (D) for Sa51. 
Explanation is in text. 

statistics. What we could do in a rough empirical manner is to compare ranks for a given top 
set or class. For instance, by arbitrarily selecting the top 10% ranks, we can evaluate the loss 
of the top target rank area in the 50% combination patterns. They mask the part of the target 
patterns with higher uncertain ranks (belonging to the higher 50% of the uncertainty pattern). 
For the patterns in Fig. 5(a)–5(d), we have a relative decrease for the top 10% target ranks as 
follows: of 29.64%, for Sa1, of 46.54% for Sa3, of 39.88% for Sa9, and finally of 61.33% 
for Sa51. This reveals a relatively greater uncertainty affecting Ta3 to Ta51 than that 
affecting Ta1. In other words, it indicates a better ranking for Ta1 with less relative 
uncertainty. 

5  CONCLUSIONS 
This contribution reanalyses a database constructed for assessing aquifer vulnerability to 
nitrate pollution around the city of Milan. The effects of spatial support are explored and a 
narrow support appears to generate more robust and less uncertain vulnerability ranks. 
Favourability function modelling with the empirical likelihood ratio is applied to four 
training areas extracted from the database. The areas simulate increasingly wider spatial 
support of water well values of nitrate concentration. The statistics resulting from the 
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prediction patterns and their cross-validations is extended from the training areas to the 
surrounding study areas. In this way the uncertainty patterns are computed and compared 
using rank and range statistics. This is done in parallel with the predictive capability of the 
prediction patterns represented by prediction-rate curves and histograms. 
     Increasing the extension of training areas leads to prediction patterns that, in spite of their 
similarity, imply the worsening of prediction quality, the loss of monotonically increasing 
character of ranking, and an increase of the uncertainty associated with the target and 
prediction patterns. The 20 m neighbourhood training area appears preferable to the wider 
ones. The assumptions of broader spatial supports generate classifications that are degrading 
with the broadening of the support. Such aspects must be considered when applying 
prediction models to areas for which the vulnerable occurrences, i.e., the impacted wells, 
consist of point values sampling a process. The training areas being modelled have to be 
limited operational neighbourhoods of the points, water wells, because their distribution, 
spacing and variability are visibly affecting the resulting prediction patterns. The many 
implications of the results obtained from the Milan area of study make it worth further 
attention. More generally, research issues worthy of consideration and linked to the 
assessment of spatial support, are: comparisons of prediction patterns and prediction-rate 
curves, and comparisons of relative uncertainty of target patterns. 
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