LAYER OF PROTECTION ANALYSIS FOR CO² STORAGE TANK

SANGHYUN PARK, HYONJEONG NOH, SU-GIL CHO & KWANGU KANG Offshore Equipment Research Center, Korea Research Institute of Ships and Ocean Engineering (KRISO), Republic of Korea

ABSTRACT

The CO₂ intermediate storage terminal play an important role in transporting the CO₂ transported through the CO₂ carrier to the subsea pipeline. In the case of large-scale CO₂ intermediate storage terminal, there are inherent hazard factors, which can lead to significant property loss and human damage in the event of an accident. In this regard, in order to ensure the safety of CO₂ intermediate storage terminal, the internationally certified safety assessment technique should be introduced. In this research, although the CO₂ intermediate storage terminal is composed of various subsystems, we only consider CO₂ storage tank among various subsystems. Since the CO₂ storage tank stores a large amount of CO₂ nearge tank is end to CO₂ leakage. We perform the Layer of Protection Analysis (LOPA) for CO₂ storage tank so as to achieve the functional safety required by the international standards. The LOPA provides the results of quantitative analysis whether the safety system about the hazard scenarios can ensure the risk within an acceptable risk level. In this research, through the LOPA of CO₂ storage tank, we evaluate the safety of conventional system and identify the required safety level for the additional safety system.

Keywords: CO₂ intermediate storage terminal, CO₂ storage tank, Layer of Protection Analysis (LOPA), Hazard and Operability study (HAZOP).

1 INTRODUCTION

The importance of Carbon Capture and Storage (CCS) technology as a means of alleviating climate change and global warming has been attracting much attention in recent years. This is because the CCS technology can maintain industry and energy system based on fossil fuels such as coal. At the same time, it provides an opportunity to massively reduce the greenhouse gas emissions required to mitigate climate change. The CCS is a technology that safely and permanently stores CO₂ captured at a thermal power plant in CO₂ storage reservoir through a CO_2 carrier and subsea pipeline. In order to safely transport CO_2 to the storage reservoir, The CO_2 intermediate storage terminal is needed prior to transporting CO_2 from the carrier to the pipeline. The CO₂ intermediate storage terminal consists of various subsystems on a large-scale. In this regard, there is always the inherent hazard factors in a large-scale facilities. When an accident arises from such a hazard factors, it may lead to significant property loss and human damage. Among the various subsystems, only the CO2 storage tank is considered in this research. Since the CO_2 storage tank stores a large amount of CO_2 , when the tank itself is ruptured, overpressure, low pressure, overcharging, etc., it may cause great damage due to a large amount of CO₂ leakage. In this research, therefore, the Layer of Protection Analysis (LOPA), a risk assessment technique, is applied to ensure the safety of CO₂ storage tank. The LOPA is performed with the procedure suggested by the international standards IEC 61508 [1] and IEC 61511 [2]. It is used to evaluate the safety of conventional system and identify the ways to reduce the risk of accidents.

WIT Transactions on Engineering Sciences, Vol 121, © 2018 WIT Press www.witpress.com, ISSN 1743-3533 (on-line) doi:10.2495/RISK180201

2 CO₂ STORAGE TANK

The system considered in this research is a CO_2 storage tank which is one of CO_2 intermediate storage terminal, and Fig. 1 represents the Piping and Instrumentation Diagram (P&ID) of the CO_2 storage tank. The 9K LCO₂ unloaded through the cargo facility is transferred to the CO_2 storage tank via the pipeline. The storage tank of the CO_2 terminal is filled with the vapor CO_2 , where the LCO₂ moves to the storage tank because the pressure is slightly lower than the cargo tank of carrier. In addition, a check valve is installed in the pipeline to prevent backflow of LCO₂, and a flow transmitter is installed to monitor the movement of LCO₂. At the same time, a temperature indicator and a pressure transmitter are installed to monitor whether the LCO₂ temperature and pressure are out of the normal range or not.

Secondly, since the capacity of CO_2 storage tank is 4.5K, LCO_2 of 9K should be stored in half. To this end, a level transmitter is installed. When the amount of LCO_2 filled in the first storage tank reaches 4.5K through the level transmitter, the first Motor Operated Valve (MOV) is locked and the MOV of the second storage tank is opened. And then, LCO_2 in the second tank is charged until it reaches 4.5K. When the 9K LCO_2 fills two 4.5K storage tanks, the intermediate storage operation is completed. When LCO_2 is stored in the storage tank, the vapor CO_2 that has filled the storage tank is released. In order to monitor the temperature and pressure of CO_2 storage tanks in this series of operations, a temperature indicator and a pressure transmitter are installed in each tank.

3 RESULTS

3.1 Hazard and Operability study (HAZOP)

The HAZOP is a qualitative risk assessment method that identifies the risk factor of system or operation-related problem. The HAZOP also should be performed for all operational modes to identify all risk factors. In addition, rather than analyzing a system as a whole, the whole system is divided into several analysis objects. First of all, before performing the HAZOP, the risk level for the hazards must be determined and the risk matrix, which is the most efficient and fastest method, is used. Table 1 represents the results of the risk matrix for CO₂ storage tank. In the case of CO₂ storage tank, the frequency of accidents corresponds to once per 10~1 year, and the consequence index corresponds to the major level (as shown Table 2). It represents the result of H (high) risk in the risk matrix, which is an unacceptable risk and should be reduced by additional safety system.

Figure 1: The P&ID of CO₂ storage tank.

Frequency		1	2	3	4	5	
Consequence		Once per over 1,000 year	Once per over 1,000~100 year	Once per 100~10 year	Once per 10~1 year	More than once per 1 year	
Catastrophic	5	Н	Н	Н	Н	Н	
Critical	4	М	Н	Н	Н	Н	
Major	Major 3		М	Н	Н	Н	
Minor	2	L	L	М	М	H	
Negligible	1	L	L	L	L	М	

Table 1: Risk matrix of the CO₂ storage tank.

Table 2: Consequence index.

Severity	Description	Target mitigated			
level	Effect on human safety	Effect on an offshore	event likelihood		
		plant or a ship			
1	Self treatment,	No effect, minor	2.10 ⁻² /year		
	disturbance or fatigue	material damage			
2	Medical treatment	Minor production	2.10-3/year		
	more than 12 hours	influence, minor			
		propulsion intervention			
3	Permanent disability or	Production interrupted	2.10-4/year		
	prolonged hospital	for weeks, propulsion			
	treatment	failure for weeks			
4	One fatality	Production interrupted	2.10-5/year		
		for months, propulsion			
		failure for months			
5	Several fatalities	Total loss	1.10-5/year		

The CO_2 storage tank was performed Preliminary Hazard Analysis (PHA) in previous research for various operation modes [3]. In this research, the HAZOP is considered with only the critical operation mode of tank, based on the results of previous research. Table 3 represents the results of HAZOP. As a result, LCO_2 can be stored over the capacity of tank when the level transmitter and MOV are failure, leading to an overflow of LCO_2 . This accident not only leads to a shutdown of the whole system, but also the human and property damage is enormous. Therefore, it is recommended to install additional level transmitter and shutdown valve through the HAZOP results.

3.2 Layer of Protection Analysis (LOPA)

The LOPA is a method for quantitatively calculating the probability of occurrence from the failure probability of each protection layer after dividing safety systems into several

			-									
	nitter,			Notes						SIL	requirement	2
required Level Transm wn system			Target	Muugated Event Likelihood (TMEL)	2.0E-04				TMEL		2.0E-04	
Actior	Action Safety Shutdo			SIF PFD						SIF	PFD	3.95Е- 03
RI	Η	Н	ık.	ate							ate	
CI	3	3	ıge taı	rmedi	u ihood	E-02			E-02	I	medi nt ihood	E-02
FI	3	4	stora	Inter	likel	1.22		1	3.85	Tota	inter ever likel	5.07
ıfeguards	I, PT, TE		sis for CO_2		Alarm	1.0E+00			1.0E+00	Total		
nce Se red over the <u>L'</u>		n ks	n ks ction analy		BPCS	1.0E+00			1.0E+00			
		capacity of storage ta and flooded, then can affect the nearby tanl able 4: Layer of protec		Protection	General process design	1.0E+00			1.0E+00			
Conseque: CO ₂ is sto	Initiating cause frequency			1.22E-02			3.85E-02					
ssible causes	lure of Level insmitter	lure of MOV	T	Initiating	cause	Failure of	Level Transmittar		Failure of MOV			
ord Pos tion	el Fai Tra	Fai		Severity	Ievel	3						
Guidewe or deviat	High lev			pact event	nonquas) ₂ leakage	e to arfilling and	enning, and	en damage to uipment, man injury			
				E B	Ĕ	В	h		n pa l			

Table 3: HAZOP report of CO_2 storage tank.

휓

WIT Transactions on Engineering Sciences, Vol 121, © 2018 WIT Press www.witpress.com, ISSN 1743-3533 (on-line)

independent layers for certain accident scenario. It usually uses initiating event frequency, severity and Independent Protection Layer (IPL) to quantify the risk of certain accident scenario. The main purpose of LOPA is to determine if there is sufficient protection layer for certain accident scenarios.

The LOPA is performed on CO₂ storage tank considering the results of HAZOP. First of all, the Target Mitigated Event Likelihood (TMEL) should be determined by the consequence index of the risk matrix. The TMEL has a value of $2.0 \cdot 10^{-4}$ /year because it corresponds to severity "3" as represented in Table 2. Also, when quantifying the initial cause frequency of the equipment, the failure rate data are obtained from λ_D (means "loss of the ability to shut down or go to a safe state when required") of Stein and Tor [3]. The frequency of level transmitter system is $1.22 \cdot 10^{-4}$ /year, and the frequency of MOV system is $3.85 \cdot 10^{-4}$ /year. The protection layer of CO₂ storage tank corresponds to the "general process design" to dual piping or vessel, "BPCS" to the control system, and "alarm" to the safety measure of operator. Table 4 represents the results of LOPA based on reliability data. The total intermediate event likelihood is 5.07E-02, which is greater than the value of TMEL and therefore does not satisfy the acceptable risk level. In order to satisfy within the acceptable risk level, the additional safety systems such as safety level transmitter and shutdown system should be designed to meet PFDavg (average probability of dangerous failure on demand) 3.95E-05 and SIL 2 level.

4 CONCLUSION

In this research, the LOPA is performed by selecting the storage tank of CO₂ intermediate storage terminal. It is considered only about tank's overfilling which is the critical operation mode. Through the LOPA, the effectiveness of protection layer is evaluated for CO₂ storage tank, and then improvements is quantitatively derived. As a result of LOPA, the total intermediate event likelihood did not satisfy a value of TMEL ($\leq 2.0E-04$) which is the acceptable risk level. The results represent that the additional safety system is required to satisfy the acceptable risk level. In order to maintain the safety of process, the safety systems also should be designed with the requirements which meet PFDavg 3.95E-05 and SIL 2 level. In the future, we will verify that the safety system to be designed meets the requirements based on the results of LOPA. If it is not satisfied, we will improve the safety system thorugh the design change.

ACKNOWLEDGEMENT

This research was supported by a grant from Endowment Project of "Acquisition and Application of Reliability Assessment Key-Technology for Offshore Plant Package/Module" funded by Korea Research Institute of Ships and Ocean engineering (PES9300).

REFERENCES

- [1] International Electrotechnical Commission (IEC), IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems, 1997.
- [2] International Electrotechnical Commission (IEC), IEC 61511: Functional safety Safety instrumented systems for the process industry sector, 2003.
- [3] Stein, H. & Tor, O., Reliability Data for Safety Instrumented Systems PDS Data Handbook 2010 Edition, 2010.
- [4] Noh, H., Kang, K., Huh, C., Kang, S.G. & Seo, Y., Identification of potential hazardous events of unloading system and CO₂ storage tanks of an intermediate storage terminal for the Korea clean carbon storage project 2025. *Int. J. of Safety and Security Engineering*, 8(2), pp. 258–265, 2018.