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ABSTRACT 
“The model is wrong!” so it is determined. All of the estimated output using the model becomes 
un-reliable immediately. And so is every other result calculated using the unreliable output. So what is 
the impact of the model being “wrong” in the later calculations? To address this question, this 
paper presents a Bayesian approach that provides a quantitative assessment for the impact on 
downstream results calculated using the unreliable estimates. Section 1 details the practical challenge 
in the financial industry and discusses why this is important. Section 2 starts the discussion with a 
description of the overall framework for this Bayesian approach, introducing and defining each 
individual component. Then Sections 3 and 4 carry on discussing the prior and likelihood 
distributions, respectively. Section 5 then obtains the target posterior distribution by applying the 
Bayesian posterior update using obtained prior and likelihood results. Then conditioning on value of 
the unreliable estimate already in place in the portfolio, the density distribution obtained can be used 
to update the output of the “wrong” model and assess the impact in further calculations. This 
approach bridges the practitioners’ initial expectations with the model performance and 
provides an intuitive quantitative assessment for the impact in the follow-up calculations which are 
largely affected by the unreliable estimate. The presented approach is the first in literature to raise the 
concern of uncertain impact caused by “wrong” models and propose a solution. The pioneer 
demonstration using uncertainty in the loss given default (LGD) models as an example and 
assessing the impact on the then calculated regulatory capital provides a timely assessment tool for 
model risk management in the current banking industry. Note that the abuse of the word wrong in 
quotation marks is an exaggeration of the uncertainty involved, in practice, impact analysis could be 
requested at any level of uncertainty.

 Keywords: model risk management, impact analysis, expected loss ratio, observed loss rate, 
Bayesian LGD estimate, loss given default (LGD), risk weighted assets, post-observation, best 
effort loss estimate. 

1  INTRODUCTION 
Modelling is a heated topic in the finance industry, especially in the recent post-crisis period 
due to 2 main reasons: First, it has a large impact for everyone in the market in monetary 
terms. Second, uncertainty in models cannot be completely avoided. Therefore, impact 
analysis for both model output and any further calculation involving the output is vital for 
risk management in the current market. 
     Defined as the percentage ratio of the total underlying exposure given default, the loss 
rate estimate comes in several different forms, market and traded estimates often assume a 
fixed loss rate of 40% [1], [2]. In the case of regulatory internal rating-based (IRB) risk 
models, the empirical loss given default (LGD) is modelled directly from bank’s internal 
loss experience [3], [4]. 
     Empirical studies show that, the observed loss ratio at portfolio level is known to follows 
the “L”, “J” or “U” shaped distribution which could vary over different time and economic 
conditions [5]. Therefore, it is difficult to obtain a well formulated theoretical distribution to 
describe the distribution of LGD in general terms. 
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     As a result, it is not uncommon to see uncertainty in LGD models raised under the 
regulatory IRB framework. While the reason behind the uncertainty can be complex, the 
requested impact analysis regarding these concerns are highly desirable. 
     We focus on the LGD model and the regulatory risk weighted assets (RWA), especially 
for the Banking Book, in this paper as an example because: 1) the Banking Book is unlikely 
to be traded or hedged, therefore the “wrong” estimate stays with the bank; 2) The LGD 
model could cover hundreds of billions of exposure, the impact of a “wrong” estimate could 
be extreme; 3) The RWA is a vital component in calculation of the regulatory Tier 1 Capital 
Ratio which is published to public and reported to both regulatory authority and the 
shareholders, it is not desired to report a result based on “wrong” estimates, and the 
consequences could be disastrous. 
     Another practical challenge banks face in reality is: re-development or re-calibrating the 
Banking Book models and obtain regulatory approval to implement the model can be very 
time consuming, in the interim, live and new deals that is measured in hundreds of billions 
of exposure is again rated by the model in question. Therefore it is unrealistic to quickly 
develop a new model to mitigate the risk without a few years of risk bearing. 
     Together with probability of default, exposure at default, and the maturity, the regulatory 
RWA can be calculated using paragraph 272 as shown in [3], here we denote the function by 
𝐹 and express the RWA as: 

𝑅𝑊𝐴 ൌ 𝐹ሺ𝑃𝐷, 𝐿𝐺𝐷, 𝐸𝐴𝐷, 𝑚ሻ.                                             (1) 

     Now, considering the uncertainty already raised, the situation is that: 1) the LGD model 
is “wrong”; 2) The estimated LGDs are un-reliable; 3) So is the RWA calculated using the 
LGD. The elephant in the room is: what is the true RWA for the current portfolio? 

2  BAYESIAN FRAMEWORK AND ANALYTICAL TARGET 
To know what is the true RWA for the portfolio is (too) hard or impossible, given the analyst 
is left with a “wrong” model and a portfolio of un-reliable LGD. However, inspired by the 
classical Bayesian analysis, this paper propose a solution to answer an alternative question: 
Given the un-reliable LGD value is 𝑥, which value, 𝜃, has the highest probability to be the 
realized LGD? 
     Denote the realized LGD by 𝜃, 𝜃 ∈ Θ, where Θ is all possible outcomes of the realized 
LGD. Further define the modelled LGD by 𝑥, 𝑥 ∈ Χ, Χ is the set of modelled LGDs. The 
probability of observing 𝜃, conditioning on estimated 𝑥, is defined as: 𝑞ሺ𝜃|𝑥ሻ. Next, we 
follow the Bayesian approach to evaluate this probability for all 𝜃 ∈ Θ, and 𝑥 ∈ Χ. 
     Assume that 𝜃  is randomly distributed with some distribution defined by 𝑞ሺ𝜃ሻ , this 
unconditional probability distribution where our initial uncertainty of 𝜃 is embedded is our 
prior distribution. 
     The distribution of estimated LGDs conditioning on the realised LGD being 𝜃, 𝑝ሺ𝑥|𝜃ሻ, is 
the likelihood obtained from observed data. This likelihood is sometimes used to describe 
the predictive power or model performance in practice, as the distribution of 𝑝ሺ𝑥|𝜃ሻ 
describes both how many 𝑥 values was estimated and the density in each estimate, given that 
the outcome is 𝜃. 
     The joint distribution of the realised LGDs Θ and the estimated LGDs Χ is given by: 

pሺθ, xሻ ൌ qሺθሻ ∙ pሺx|θሻ, θ ∈ Θ, x ∈ Χ.                                            (2) 

     The marginal distribution of the modelled LGDs can be obtained by integrating through 
the space of the possible outcomes: 
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𝑝ሺ𝑥ሻ ൌ ׬ 𝑞ሺ𝜃ሻ ∙ 𝑝ሺ𝑥|𝜃ሻ 𝑑𝜃஘∈஀ .                                            (3) 

    According to the Bayes’s Theorem, this is the posterior distribution (see more in [6]): 

𝑞ሺ𝜃|𝑥ሻ ൌ
௤ሺఏሻ∙௣ሺ௫|ఏሻ

௣ሺ௫ሻ
ൌ

௤ሺఏሻ∙௣ሺ௫|ఏሻ

׬ ௤ሺఏሻ∙௣ሺ௫|ఏሻ ௗఏಐ∈౸

.                                      (4) 

     In the sections below, we discuss each of the individual components in detail. 

3  PRIOR DISTRIBUTION: 𝑞ሺ𝜃ሻ 
Prior selection is an important topic in the application of Bayesian frameworks. This 
distribution express the initial belief on the unknown random variable, the LGD 𝜃 in this 
case, in the meantime, the choice of this distribution could have large influence on the later 
obtained posterior distribution, so it is important to understand the goal of this selection 
beforehand. 
     It is common in practice to use a so called “vague” or “non-informative” uniform prior to 
limit the influence of making specific prior choices. In plain language, this can be expressed 
as: we do not know anything about the unknown variable of interest, so we equally accept 
any outcome and the chance of observing any outcome is the same. 
     We acknowledge that one of the disadvantage of the Bayesian approach is the subjectivity 
in the choice of prior, and the fact that using a non-informative prior well limit impact of the 
subjectivity. 
     However, in case for the internal experience based Bayesian framework, the prior 
distribution 𝑞ሺ𝜃ሻ is the probability distribution of observing the realised LGD of 𝜃. In reality 
it is unlikely for a bank, especially an IRB bank, to state that there is no knowledge with 
regards to the distribution of observed LGDs, after all the regulatory approval on the use of 
loss estimate models assume that the bank have empirical evidence and understand the 
internal loss experience. 
     On the other hand, owning such knowledge and yet purposely choose to ignore it by 
choosing non-informative prior distribution will not only purposely mislead the algorithm 
with false information, it will worsen the other widely known weakness of the Bayesian 
approach: heavy computational cost. 
     To best represent the empirical loss experience, our choice of prior is loss data based. But 
it is unlikely in practice for the internal loss data to be large enough to illuminate the impact 
on the posterior, even though it is known that the realised LGDs can be heavily bi-modal or 
skewed towards boundary values [7]. This leads to the general sampling problem between 
sample distribution and the true population distribution. 
     Suppose the sample distribution is 𝑞෤ሺ𝜃ሻ, and the link between the sample distribution and 
the population distribution is a constant normalization parameter 𝑍௤ where: 

𝑞ሺ𝜃ሻ ൌ
ଵ

௓೜
∙ 𝑞෤ሺ𝜃ሻ.                                                       (5) 

     The issue here is that the sample distribution can be easy to obtain, but the constant 𝑍௤ is 
impossible or too hard to compute. 
     Depending on size of the available data there are several approaches to help overcome the 
sampling problem and estimate the true population distribution, widely known and 
considered methodology include: Markov Chain Monte-Carlo (MCMC), Kernel Density 
Estimation methods (KDE) and Bootstrap algorithms, see [8]–[10] for more details. 
     In this paper, we employ the MCMC approach and use a Metropolis–Hastings sampler to 
create the chain of target distribution. We will not discuss the details of MCMC nor the  
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M–H sampler here. More discussion of the algorithm can be found in [8]. We only followed 
the vanilla approach using Uniform sampling distribution and “independent” constant 
probability for the proposal distribution. 
     Denote the internal observed historical data set as Θ௛, the observed LGD values as 𝜃௛. 
The observed sample distribution is 𝑞෤ሺ𝜃௛ሻ while the population distribution does not change. 
     Fig. 1 demonstrate the density plot of the data and the outcome of the MCMC process. 
Fig. 1(a) is the density distribution of the observed LGDs, the y-axis mark the density, the x-
axis is the observed LGD. Fig. 1(b) is the estimated population distribution of the LGD. 

4  THE LIKELIHOOD: 𝑝ሺ𝑥|𝜃ሻ 
As mentioned in Section 2, the likelihood is the conditional probability of the modelled LGD 
𝑥 given a realised LGD 𝜃. The likelihood is often reviewed in a bucketed way in case for 
regulatory IRB LGD models because of conservatism or downturn assumptions embedded, 
also, the bucketed view well adopt the error tolerance in model predictions. 
     In this paper, we follow the practice and classify the realised LGD 𝜃 in five equal buckets 
between percentage values of 0 and 100%. 
     Note that bucketing is not compulsory for the Bayesian analysis, we adopt this practice in 
order to reflect the reflect the analytical approach in the industry. 
     The details of this bucketing scheme is defined as shown in Table 1. 
 

 

Figure 1:  Historical observed LGD distribution vs. simulated LGD distribution. 

Table 1:  Example of a 5-bucket LGD scale. 

Bucket name Lower LR bound Expected LR Higher LR bound 
𝜃ଵ 0.00% 10.00% 20.00% 
𝜃ଶ 20.00% 30.00% 40.00% 

𝜃ଷ 40.00% 50.00% 60.00% 

𝜃ସ 60.00% 70.00% 80.00% 

𝜃ହ 80.00% 90.00% 100.00% 
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     There are many ways to derive the distribution for 𝑝ሺ𝑥|𝜃ሻ. Empirically summarising the 
mass probability for each 𝑥ଵ conditioning on realised observation of 𝜃ଵ is straightforward for 
data rich loss experience. However, as the sensitivity test and distributional analysis of the 
underlying statistical model are probably available as part of model development or review, 
one can follow the model assumptions and construct the theoretical likelihood distribution. 
     To demonstrate the modelling and impact in details, we assume that the likelihood 
distribution follows a mixture beta distribution, see [11] and [12] for details. The choice of 
mixture distribution here is just to demonstrate the boundary densities and the different 
modality properties for different LGD buckets respectively. 
     Mathematically, the mixture distribution is as following: 

𝑝൫𝑥|𝜃௜; 𝛼௜
௝, 𝛽௜

௝, 𝜌௜
௝൯ ൌ ∑

ఘ೔
ೕ

୺ቀఈ೔
ೕ,ఉ೔

ೕቁ
∙ 𝑥ఈ೔

ೕିଵ ∙ ሺ1 െ 𝑥ሻఉ೔
ೕିଵ௝ୀଶ

 ௝ୀଵ  for 𝑖 ∈ ሾ1, ⋯ ,5ሿ.         (6) 

     For simplicity we set the weight of the mixture distribution 𝜌௜
௝ ൌ 0.5 for all LGD buckets 

𝑖 ൌ 1, … ,5. In practice, the distribution properties should reflect the underlying model in use 
and there for is less flexible in terms of parameter setting. 
     Here the mixture distribution in each bucket is centred on the mean of the bucket but given 
the model development knowledge of the boundary properties, we assume the modelled 
likelihood reflects higher chance to observe extreme boundary LGDs. 
     Fig. 2 demonstrates the distribution based initial expectation according to the loss rating 
bucketing scheme as defined in Table 1. It is important to highlight that the likelihood of 
obtaining boundary losses are purposely inflated to mimic the modelling effort towards the 
more frequently observed extreme losses. For example, in the first bucket, when the outcome 
is a lower end loss the model is expected to predict lower loss more often. While in the 4th 
bucket, when the observed loss is between 60–80%, more higher-end prediction is expected, 
even in case of conservative estimates between 80–100% in the right tail. 
     Assume that we have a data set Χௗ, recording the recent experience of realized LGD 𝜃ௗ 
for each of the model estimated LGD 𝑥ௗ. One then first bucket the realized LGD according 
to the bucketing scheme shown in Table 1 to obtain 𝜃௜

ௗ, for 𝑖 ∈ ሺ1, 5ሻ. Then the observed 
conditional likelihood distribution of 𝑝൫𝑥ௗ|𝜃௜

ௗ൯ for all buckets can be obtained. 
 

 

Figure 2:  Distribution of modelled estimates for each of the observed loss rate buckets. 
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     Fig. 3 is the consolidated likelihood plot over the observed loss rates obtained directly 
from the data set Χௗ, one can see that the issue with distribution obtained from the data is 
that it is incomplete, in 𝜃ଵ

ௗ for example. Fortunately, there is no need to employ the numerical 
techniques to overcome the sampling problem in order to get the conditional likelihood 
distribution of 𝑝ሺ𝑥|𝜃ሻ in case the model is built in house and the distribution is known to the 
analyst. Therefore, obtaining the conditional likelihood is preferred if model specification is 
available. The complete likelihood distribution curves is shown in Fig. 4. 
 

 

Figure 3:  Distribution of modelled estimates for realized loss rate 𝜃. 

 

Figure 4:  Distribution of updated modelled estimates 𝑥∗ for realized loss rate 𝜃. 
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     Table 2 summarise the likelihood distribution of the mixture double beta distribution 
calibrated according to the modelled LGDs as discussed earlier. Conditioning on realised 
LGD buckets, cells in Table 2 present the likelihood of obtaining a modelled outcome in 
different buckets. For example, cell [𝑥ଵ, 𝜃ଵ], 93.28% as shown, means that the model is 
highly likely to produce an estimate of 𝑥ଵ which later resolves into 𝜃ଵ, the likelihood of in-
bucket estimation helps to measure the model performance in this bucket. 

5  POSTERIOR DISTRIBUTION: 𝑞ሺ𝜃|𝑥ሻ 
The posterior distribution can now be obtained using the Bayes’s Theorem: 

𝑞ሺ𝜃|𝑥ሻ ൌ
௤ሺఏሻ∙௣ሺ௫|ఏሻ

௣ሺ௫ሻ
ൌ

௤ሺఏሻ∙௣ሺ௫|ఏሻ

׬ ௤ሺఏሻ∙௣ሺ௫|ఏሻ ௗఏಐ∈౸

.                                     (7) 

     From the above sections we see that the both the prior distribution and the likelihood 
function are directly derived from the real observed data: while the likelihood bridge the 
model performance in accordance to the realised LGD, the prior distribution could be purely 
data based. 
     It is important to understand that the conditional probability obtained as posterior is a full 
distribution curve based primarily on the observed data and the underlying model, and 
therefore this probability describes the chance of observing a LGD 𝜃 given the modelled 
LGD 𝑥, based on the internal experiences of model estimate and observation. 
     This is different from the conditional probability obtained directly from the observed data, 
i.e. 𝑞෤ሺ𝜃ௗ|𝑥ௗሻ, especially the periodical performance review data. The distribution of the 
observed data set is unlikely to provide complete information of the observed LGDs. 
     One may wonder if she could apply the same technique that is used to derive the prior 
distribution, such as MCMC, on the periodic model review data to generate the conditional 
probability 𝑞ሺ𝜃|𝑥ሻ from the observed data directly. The constraint here is the condition on 
modelled LGD, as both realised and modelled LGDs follow different distributions, 
simulation over a condition with unknown distribution can be difficult and inaccurate. 
     Once the posterior is obtained, the expected LGD can then be calculated conditioning on 
the estimate in place. 

𝑥∗ ൌ Εሺ𝜃 ൌ 𝑥∗|𝑥ሻ ൌ ׬ 𝜃 ∙ 𝑞ሺ𝜃|𝑥ሻ 𝑑𝜃
ఏ

ିஶ ൌ ∑ 𝜃 ∙ 𝑞ሺ𝜃|𝑥ሻఏ .                       (8) 

     Now, recall the recently observed data set Χௗ. One can test and plot the distribution of the 
updated LGD estimates to visually illustrate the impact of posterior update on the observed 
data set. 
     Fig. 4 is the updated posterior distribution plotted in comparison with the modelled 
likelihood distribution, we still plot and demonstrate the distribution in the same conditional 
setting as for the likelihood to show the impact of posterior update, under the same bucketing 
scheme. 

Table 2:  Likelihood for LGD buckets. 

Bucket name 𝜃ଵ 𝜃ଶ 𝜃ଷ 𝜃ସ 𝜃ହ 
𝑥ଵ 93.28% 20.34% 9.99% 4.59% 1.46% 
𝑥ଶ 6.79% 64.29% 11.09% 5.30% 1.84% 
𝑥ଷ 0.49% 9.46% 57.80% 8.32% 2.49% 
𝑥ସ 0.01% 4.72% 11.09% 55.98% 5.03% 
𝑥ହ 0.00% 1.17% 10.00% 25.79% 89.16% 
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     Similar to Table 2, Table 3 summarizes the probability 𝑥∗ for each bucket of observed 
LGD 𝜃 to obtain the post-observation updated distribution. 
     Browsing through Table 3 by columns, one may draw some initial findings from the table 
itself, for example, for observed LGD in bucket 𝜃ଵ, the likelihood of observing an in-bucket 
model estimate, 𝑥ଵ

∗, is 92.41% which continues to support the expected concentration of 
observations near 0%, although this is lower than the likelihood of 93.28% according to the 
initial model specification. However, while for model estimates 𝑥ହ

∗ in bucket 𝜃ସ, the 51.13% 
likelihood indicates that: for all of the losses that resolves into bucket 𝜃ସ, the model is most 
likely to produce an out-of-bucket over-estimate of 𝑥ହ

∗. Likewise, the likelihood of 37.60% 
in cell [𝑥ଵ

∗, 𝜃ଶ], comparing to the likelihood of 34.00% in cell [𝑥ଶ
∗, 𝜃ଶ] indicates that the model 

is slightly more likely to offer an estimate of 𝑥ଵ
∗ for losses later resolve in to bucket 𝜃ଶ, an 

under-estimate in this case. 

6  UPDATED LGD AND CAPITAL ADEQUACY 
Fig. 5 illustrates the prior, likelihood and posterior distribution of the LGD, it is clear that 
because of the model in place, the post-observation updated LGDs could be observed on 
different tendencies. 
     Before proceeding to apply the RWA formula using the updated estimate 𝑥∗, we’d like to 
stress that the aim of this paper is to quantify the impact of uncertainty instead of updated 
and replace the regulatory parameters used under approval from authority. It is recommended 
that the 𝑥∗ reviewed internally for risk management purposes. If gap is found between the 
𝑅𝑊𝐴|𝑥 and the 𝑅𝑊𝐴∗|𝑥∗, the risk mitigation should be considered as a buffer in addendum 
rather than a direct update of the regulatory reported RWA itself. 

Table 3:  Updated likelihood for LGD buckets. 

Bucket name 𝜃ଵ 𝜃ଶ 𝜃ଷ 𝜃ସ 𝜃ହ 
𝑥ଵ

∗ 92.41% 37.60% 15.76% 6.78% 2.64% 
𝑥ଶ

∗ 6.79% 34.00% 12.36% 6.15% 2.63% 
𝑥ଷ

∗ 0.77% 18.83% 36.04% 11.86% 5.36% 
𝑥ସ

∗ 0.01% 7.68% 14.27% 24.05% 6.72% 
𝑥ହ

∗ 0.00% 1.86% 21.56% 51.13% 82.62% 
 

 

Figure 5:  Overall OLR distribution. 
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     The regulatory Tier 1 capital ratio compares the equity capital to the RWA, where the 
latter is calculated directly using the model estimated LGDs for advanced IRB banks. 
Therefore, the uncertainty in the underlying LGD estimate could result doubts in the bank’s 
capital ratio, hence applying the updated LGD estimation to update the calculation of the 
RWA is a direct assessment of adequacy conditioning on the model in place. 
     Recall the simple expression of RWA from Section 1: 

𝑅𝑊𝐴 ൌ 𝐹ሺ𝑃𝐷, 𝐿𝐺𝐷, 𝐸𝐴𝐷, 𝑚ሻ.                                            (9) 

     All forms of the updated RWAs relates to updated LGD can be mathematically expressed 
as: 

𝑅𝑊𝐴௅∗,∙ ൌ 𝐹ሺ𝐿𝐺𝐷∗,∙ሻ.                                                 (10) 

     The updated RWA can then be calculated by using the updated LGD, to help quantify and 
address the impact, in case uncertainty is found in the quality of modelled estimates. 

7  CONCLUSION 
In this paper, we start the discussion with a practical problem in the finance and banking 
industry where model performance is questioned and the impact in downstream calculations 
are difficult to assess. We then propose a Bayesian framework to estimate the conditional 
probability of observed LGD conditioning according to the model estimated LGD. 
     This approach allows the practitioner to timely assess current positions according to latest 
observed real life experience and understand the adequacy of the calculated RWA exposure-
by-exposure. This allows assessment of impact of uncertainty from the model which results 
in the follow-up calculation, e.g. the RWA, quantitatively at penny level accuracy even with 
dynamic portfolio changes. 
     The Bayesian approach can be easily extended to review model performance, for example, 
we have presented a mixture double beta distribution based on our assumptions for the model 
in Section 4 for likelihood estimation, for review tests, this assumption could be an initial 
theoretical assumption that is different from the model. This way, if we define the theoretical 
likelihood as 𝑝௧ሺ𝑥|𝜃ሻ and actual modelled likelihood as 𝑝௠ሺ𝑥|𝜃ሻ, the impact of assumptions 
can then be quantified easily by comparing the different likelihoods. 
     Similarly, the approach is applicable in case for model selection as well, assume that two 
models 𝑚1 and 𝑚2, where the likelihoods and conditional posterior distribution is 𝑝௠ଵ, 𝑝௠ଶ, 
𝑞௠ଵ and 𝑞௠ଶ respectively, one can easily test for the better performing model between the 
two candidates. 
     This approach is the first in literature specifically aiming to address the impact when 
uncertainty arose from a model and results further uncertainty in follow-up calculations, we 
demonstrate the detailed thought process and step-by-step demonstrate the procedures using 
an example in which uncertainty in the RWA resulted from an “ill” LGD estimate model. 
     Lastly, it is important to point out that aside from the widely accepted Bayesian Theorem, 
our approach also benefit from the fact that there is no additional data requirement aside from 
the historical and recently observed data, moreover, there no additional assumption or 
scenario change required on the underlying model. 
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