
A disaster severity assessment decision  
support tool for reducing the risk of failure  
in response operations 

S. Hasani, R. El-Haddadeh & E. Aktas 
Business School, Brunel University, UK 

Abstract 

After a disaster strikes, the disaster severity needs to be estimated in order to 
provide an adequate humanitarian response. The decision makers need to decide 
quickly about the requisite supplies and bespoke teams based on the scale and 
nature of the disruption. The failure of the severity assessment may impose risk 
to the success of the response operations, leading to the loss of lives at worst. 
The existing severity assessment tools employ various criteria such as intensity, 
frequency, vulnerability and capability. However a framework which 
differentiates between the impact of disasters on communities with different 
coping capabilities, is missing. For example, an equally intense earthquake 
affects Japan differently from Haiti, due to the difference in the coping 
capabilities of the two nations. To that end this paper investigates the records of 
previous disasters to provide a holistic Disaster Severity Assessment (DSA) tool. 
This decision support tool accommodates physical and socio-economic impacts 
of the disaster on the affected population. The assessment is based on six criteria 
including impact time, fatality, casualty, relative financial damage, Human 
Development Index (HDI) and Disaster Risk Index (DRI). The resulting decision 
support tool may be used to diagnose the severity of the disaster immediately 
after it strikes. It also is capable of accommodating the imprecise data by the 
means of a fuzzy classification system. This characteristic allows the decision 
maker to draw a realistic picture of the disaster response required based on the 
affected population capabilities and reduce the risk of failure in disaster response 
operations.  
Keywords: disaster response operations, severity assessment, disaster risk 
management, risk reduction, decision support, fuzzy classification.  
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1 Introduction 

Disaster as a physical disruption leaves the community incapable of coping with 
the impacts of the disaster. Therefore the timely supply of adequate aid and 
supplies during the response operation would save lives. Conversely the risk of 
failure of the disaster response operation may be increased by inaccurate 
assessment of the disaster severity. 
     The present paper suggests that a decision support tool drawn upon the 
existing data from previous disasters could be used as a guideline for the severity 
assessment of future disasters with similar characteristics. This scenario-based 
decision support technique would assist in estimating the impact of the disaster 
on the affected community in the early stages of the disaster, and provide an 
accurate estimation of the required aid at an early stage. The impact of disasters 
has been the subject of a number of studies providing a scalable framework for 
classifying any given disaster’s disruption effect. These frameworks are based 
on, amongst others: intensity, affected population, temporal and geographical 
dispersion [1–3]. Other approaches have been developed to take into account the 
social and cultural variables [4–6] as well as the socio-economic variables such 
as coping capability, vulnerability, social preparedness, human development 
indicator, disaster risk index, exposure, resourcefulness and demand/supply 
capability of the affected communities [7–13]. The significance of these 
approaches is to differentiate between the actual impacts of the disaster on 
various communities. For example an intense flood, which barely puts lives and 
infrastructure in danger, due to its occurrence in a remote area might not require 
a humanitarian response [8]. Also two disasters with a similar disruption 
magnitude could have a low impact in a community with more coping 
capabilities such as Japan, whilst it might create a catastrophic impact on Haiti 
with a lower level of coping capabilities. One problem that decision makers are 
facing is that despite the existence of the appropriate measures in the literature, a 
holistic severity assessment tool, which differentiates between the various 
scenarios of disasters, is yet to be developed. Another problem that decision 
makers are facing is that due to the time pressures during a disaster, most of the 
data remains un-obtainable, unreliable or imprecise. Therefore the decision tool 
needs to be based on existing or obtainable data, and have the capability to 
accommodate imprecise values. To that end the current study aims to design a 
disaster severity assessment tool based on previous experience, which is quick, 
easy to use and capable of working with existing data. It also is required to 
accommodate the imprecise values inherited in the uncertain disaster situation. 

2 Disaster Severity Assessment (DSA method) 

The first step is to develop a method for the classification of previous major 
disasters. The aim is to identify a pattern for disaster severity. In this step the 
secondary data from four various sources is obtained. Primarily the prominent 
natural disasters occurring after 1980 mentioned in the encyclopedia of disasters 
by Gunn [14] have been analysed. The results were compared to the 
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costliest/deadliest disasters in NatCatSERVICE [15] provided by ‘Munich 
Reinsurance Company’ and containing 26,000 natural disasters since 1979. This 
data was then compared to the EM-DAT database [16] published by the ‘Centre 
for Research on the Epidemiology of Disasters’ and is based on 17,000 natural 
and technological disasters since 1900. Finally the results were compared to the 
DesInventar project [17] and resulted in identification of 61 disasters as the data 
source for the present paper (table 1).  

Table 1:  An example of the data source for the present paper. 

Year Disaster type Origin Fatalities Affected people Overall Loss 
1983 Earthquake USA 1545 31 Not specified 
1985 Earthquake Mexico 9500 2130204 4104 
1988 Earthquake Armenia Non-existent in the data base 
1989 Earthquake USA 62 3757 5600 
1990 Earthquake Iran 26796 267628 500 
1994 Earthquake USA 60 27000 30000 
1995 Earthquake Japan  5297 541636 100000 
1999 Earthquake Taiwan 2264 108664 14100 
1999 Earthquake Turkey 17127 1358953 20000 
2001 Earthquake India 20005 6321812 2623 
2001 Earthquake Peru 145 349978 300 
2003 Earthquake Iran 40000 710000 8000 
2005 Earthquake Iran 612 94766 80 
2005 Earthquake Pakistan 73338 5128309 5200 
2008 Earthquake China 87476 45976596 85000 
2011 Earthquake New Zealand 181 301500 15000 
2012 Earthquake Italy 17 14350 Not specified  
2004 Earthquake Japan 89 84792 2300 
2004 Tsunami Sumatra 80 5063 500 
2010 Tsunami Chile 562 2671556 30000 
2011 Tsunami Japan 19846 368820 210000 
2004 Tsunami Indonesia 165708 532898 4451.6 
1991 Flood China 1729 210232227 7500 
1993 Flood China 1000 6061 
1993 Flood USA 48 31000 12000 
1996 Flood China 2775 154634000 12600 
1998 Flood China 3656 238973000 30000 
1998 Flood North Korea 50 10172 Not specified  
2002 Flood Europe 167 49500 500 
2008 Flood USA 24 11000148 10000 
2010 Flood Pakistan 1985 20359496 9500 
2011 Flood Thailand 813 9500000 40000 
2006 Mudslides Philippines 1399 2562517 66.4 
2004 Cyclone  USA 10 30000 16000 

 
     The second step is to develop the disaster severity assessment tool. The 
present study combines the DeBoer/Ferro classification models and customises 
the combination to suit its purpose. DeBoer [18] and Ferro [3] provide a model 
for classification of disasters from the medical perspective. Their model ranks 
the disasters based on scores associated to each value including Cause of 
disaster, National or International assistance, temporal, geographical and 
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physical affected area, the number of fatalities and casualties, rescue time and 
severity of injuries (table 2).  
     This model has been further developed to accommodate the socio-economic 
factors of the affected community. The resulting Disaster Severity Assessment 
(DSA) framework is exhibited in table 3. The framework shares three 
characteristics with DeBoer/Ferro framework (time, fatality, casualty) and adds 
three new terms (financial damage, HDI and DRI). These terms are explained in 
the following section.  

Table 2:  The DeBoer/Ferro severity framework. 

Classification Grade Score DeBoer Ferro  
Cause Natural/Man-made 1/0 +  
Effect on surrounding 
community  
(National assistance/ 
international assistance) 

Simple/Compound 1/2 +  

Impact time > 24 hour/1–24 hour/1 hour > 2/1/0 + + 
Radius of disaster area 10 km </1–10 km/< 1 km 2/1/0 + + 
Number Causalities 25–100 causalities alive or dead 

or 10–50 admission to hospital/ 
100–500 causality or 50–250 
admission/more than 500 
causalities of more than 250 
hospital attendance 

0/1/2 +  

Rescue time (rescue first 
aid + transport + 
evacuation) 

24 hours </6–24 hours </6 hours 2/1/0 + + 

Effect of infrastructure 
(impact site + filter area) 

Simple/compound 1/2  + 

Number of dead < 100/100 < 0/1  + 
Number of injured 1000 < 100–999 < 100 2 < 1 < 0  + 
Average severity of injuries 
sustained 

2 < 1–2 < 1 2 < 1 < 0  + 

Total 1–13

 
     Each category is then defined by a number of thresholds starting from the 
minimum value observed in the disaster records (for example 1 day impact time) 
for the lower bound and ending to the upper bound where the outliners are 
observed (for example more than 2 weeks). The categories for impact time; 
fatalities, casualties, financial damage and severity are designed in a way that 
each category exhibits at least ten frequencies in the records. For the last two 
terms (HDI and DRI), the categories are identical with the thresholds used in 
their original reports [12, 13]. The first characteristic is impact time associated 
with the number of days in which the disaster is in effect. The second 
characteristic is the damage to the population by either loss of lives (fatalities) or 
other types of damage to the population including injuries, etc. (casualties). The 
third characteristic is the ‘relative financial damage’ defined in this study as an 
indication of the material losses of the affected community. This characteristic 
originally is expressed in million dollars in various sources (NetCatService,  
EM-DAT). However 1 million dollar worth of damage in a low-income country 
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such as India where the GDP/capita in 2005 was 740 dollar is likely to cause 
deeper socio-economical damage than a high-income country such as USA with 
42,516 dollar GDP/capita in the same year. To that end the relative financial 
damage used in the DSA are calculated using the following formula (1): 
 

	݁݃ܽ݉ܽ݀	݈݂ܽ݅ܿ݊ܽ݊݅	݁ݒ݅ݐ݈ܴܽ݁ ൌ
ை	ௗ		ௗ௦௦௧	

௧ௗ	௨௧௬	ீ		௧
            (1) 

 

     The  result  expresses  the  relative financial damage of a specific disaster in a 
specific year.  

Table 3:  Disaster severity assessment framework. 

Characteristics Categories Linguistic value Numeric   
value 

Impact time (day) Over 2 weeks/between 1–2 weeks/ 
1 day–1 week/1 day 

Extreme/long/ 
medium/short 

3/2/1/0 

Fatalities  
(Person) 

Over 1000/between 100–999/ 
under 99 

High/medium/ 
low 

2/1/0 

Casualties 
(Person) 

Over 1000, 000/between 1000,  
000–99,999/below 99,999 

High/medium/ 
low 

2/1/0 

Relative financial 
damage (USD) 

Over 10, 000/between 1000–10, 000/ 
between 1000–100/under 100 

Extreme/high/ 
medium/low 

3/2/1/0 

HDI (%) Under 4.66/ between 4.67 and 
6.40/between 6.41 and 7.59/over 7.59 

Low/medium/ 
high/extreme 

3/2/1/0 

DRI (%) Under 3.65/between 3.66 and 5.72/ 
Between 5.73–7.44/between 7.45 to 
10.58/over 10.59  

Low/medium/ 
high/very high/ 
extreme 

0/1/2/3/4 

Total Severity Less than 5/between 5 and 10/more 
than 10 

Severe/very severe/extreme 

 
     The last two categories indicate the capacity of the affected country for 
coping with disaster including the HDI and DRI. Human development Index [12] 
published by UNDP is based on health, education and living standards for each 
country. Where HDI is the lowest (such as Haiti), the country is less likely to 
have the capability to cope with the damages comparing to a county with higher 
HDI (such as Japan). 

Table 4:  The example of the DSA result. 
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Severe 
 

2012 Italy earthquake 1 V 112 33049 484.13 3 

1982 Mexico eruption 1 H 94 2366 49.45 5 

Very 
Severe 

1993 USA flood 60 V 127 25327 473.8 6 

2004 Haiti cyclone 2 L 21 401 124.69 9 

Extreme 
2008 China earthquake 1 M 78 3414 24897.48 12 

1996 China flood 27 M 78 703 17923.19 15 

Risk Analysis IX  373

 
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 47, © 2014 WIT Press



     Another characteristic is Disaster Risk Indicator (DRI), which calculates 
where the high exposure to natural hazards and climate change coincides with 
very vulnerable societies. This index is published in the World Risk Report [13]. 
Therefore where DRI percentage is higher, it is more likely that the affected 
society will fail to cope with the situation.  
     The present Disaster Severity Assessment (DSA) classifies disasters into 3 
categories: severe disasters (less than 5 DSA rank), very severe disasters (rank 
between 5 and 10) and extremely severe disasters (Rank above 10). Due to 
publishing limitations, just an example of the results obtained from DSA 
technique is exhibited in table 4.   
     The significance of this framework is that it could be used as a quick 
guideline for decision makers under time pressures at the early stages of a 
disaster. By knowing the approximate number of fatalities, casualties and the 
financial damage, the disaster severity can be estimated at any given time and the 
response actions could be conducted accordingly. Also as the disaster develops, 
the numbers and the model can be easily re-adjusted. For a more technical 
decision maker that prefers to work with mathematical decision-making models, 
the DSA data could be used as the basis for building the fuzzy system’s 
knowledge base to diagnose the severity of the situation in linguistic or 
numerical terms. An example of such system design is the subject of the next 
section.  

3 Fuzzy classification system 

According to Cintra et al. [19], classification is an important task in decision-
making where it provides a key to the interpretation of the system’s behaviour. 
But in some cases the parameters and input data are imprecise and the 
framework is required to adequately process the imprecise data as well as the 
associated uncertainty. To that end the fuzzy technique introduced by Zadeh [20] 
is selected for this study because of its capacity to classify the linguistic 
attributes associated to disaster situation. This classification is based on the rules 
drawn from a particular knowledge base, which in this paper are the result of the 
presented DSA in the previous section. The simplified steps of the fuzzy 
classification employed in the paper are described below:  
     1. Consider the pattern that requires to be classified (here it is the severity 
pattern of the disaster). The meaning of the linguistic terms is defined by their 
membership functions (2) where S stands for Severity. For example the 
membership function of the output (here Severity) is expressed in three linguistic 
terms including severe, very severe and extreme. A similar set of membership 
functions are required to be generated for each input (here including impact time, 
fatality, DRI, etc.). 
 

ܵ	:௦ߤ → ሾ0,1ሿ																																																												(2) 
 
     Therefore a simple presentation of this concept for severity is presented in 
figure 1. 
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 ሻݕݐ݅ݎ݁ݒሺܵ݁	ߤ                        
 
                       1 
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Figure 1: The graphic representation of the Severity membership function. 

     2. A set of fuzzy rules based on previous experience or expert opinion is 
defined to exhibit the relationships between inputs or terms (here the impact 
time, casualty,) and output (here severity). The rule base can be defined as 
ሼܴ݅	|݅ ൌ 1,2, ݊ሽ,	therefore the (semi) qualitative rule can be defined as (3): 
 

,	ଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଵܣ	ݏଵ݅ݔ	݂݅ … ,  ଵ            (3)ܤ	ݏ݅	ଵݕ	݄݊݁ܶ	,ܣ	ݏ݅	ݔ	݀݊ܽ
 
where x is the input (here impact time, fatality, direct), y is the output (here 
severity) and A and B is the linguistic variables such as high, low, extreme. 
Because in this model the impact time can take four values 
(Extreme/Long/Medium/Short), Fatality and casualties could each take three 
values (High, Medium, Low), Relative financial damage and HDI could take 
four values (Extreme, High, Medium, Low), DRI could take five values 
(Extreme, Very High, High, Medium, Low) and finally severity could take 3 
values (Severe, Very Severe, Extremely Severe), The number of possible rules 
are 2160 rules (4 x 3 x 3 x 4 x 5 x 3). However the review of the DSA result in 
the previously recorded disasters (61 disasters) shows that the rules followed in 
reality can be summarised into the sum of 48 rules including the following 
examples. 

 
Box 1:   Rules derived from historical data. 

 
 

Rule (1): if fatality is High and casualty is High and impact time is Extreme and 
HDI is Medium and DRI is Medium and financial damage is Very high then 
severity is Extreme. 

… 
Rule (48): if fatality is Low and casualty is Low and impact time is Medium and 
HDI is Very high and DRI is Very high and financial damage is Low then 
severity is Severe. 

 

 
     3. The fuzzy inference system runs the pattern through the rules to identify 
the class in which the output (severity) belongs. The compatibility of the rules 
then will be compared to the pattern of severity in disaster. The class predicted 
by the rule is assigned to the attributes. Figure 2 exhibits that how the severity of 

Severity

Severe   Very Severe    Extremely Severe
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disaster can be diagnosed by identifying the conjunction between the imprecise 
variables’ space. For enhancing the graphical illustration, assume a two-
dimensional pattern space [0, 1] x [0, 1] by having two variables of fatality and 
DRI. Based on the following simplified rules figure 2 can be illustrated as 
follows.  
 

Box 2:    Simplified rules for a two dimensional space. 
 

 
If fatality is high and DRI is medium, then severity is extreme 

And 
If fatality is low and DRI is low then severity is severe 

 

 
 

 

Figure 2: The overlapping areas of the fuzzy sets. 

     In a more complex space with more dimensions, if we have K fuzzy subsets 
ሼܣଵ

, … , ܣ
ሽ, a triangular membership function [21] can be calculated based on 

formula (4) where (a) and (b) respectively are the upper and lower bound in each 
categories of input (table 1). 
 

ߤ
	ሺݔሻ ൌ maxሼ1 െ หݔ െ ܽ

หܾ, 0ሽ			 , ݅ ൌ 1,2, … , ݇	ሺ݇  2ሻ              (4) 
 
     The formula (4) can be translated to the following if-then construct (5) in MS-
Excel to calculate µ(x) of the x-values (impact time, DRI, etc.) and µ(y) of the  
y-value (severity).  
 

IF (AND (x > left, x < right), 1 - ABS ((left + right-2*x)/(right - left)), 0)   (5) 
 
where left and right respectively represent the lower and upper bounds of the 
threshold (table 1) and ABS is the absolute value. Part of the result is exhibited 
in table 5.  
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Table 5:  An example of the data used for triangular membership functions. 

Term Position x-value µ(x) Term Position x-value µ(x) 

Fatalities High Left 1000.00 0.00 HDI Low Left 0.00 0.00 

Right 10000000.00 0.00 Right 4.66 0.00 

Medium Left 100.00 0.00 Medium Left 4.67 0.00 

Right 999.00 0.00 Right 6.40 0.93 

Low Left 0.00 0.00 High Left 6.41 0.00 

Right 99.00 0.00 Right 7.58 0.28 

Severity Severe Left 0.00 0.00 Extreme Left 7.59 0.27 

Right 5.00 0.00 Right 100.00 0.00 

Very Severe Left 5.00 0.00

  Right 10.00 0.00

 Extreme Left 10.00 0.00

  Right 20.00 0.00

 
     The data provided in table 5 and the two simplified rules employed in  
figure 2 were used for simulation and control of the model with an open source 
computer program (Fuzzylite, 2013) as is exhibited in (figure 3).  
 

 

Figure 3: A snapshot of the created fuzzy model based on the data in table 3. 

     Figure 3 employs the clipping as one of the most common ways of showing 
correlation between the rule outputs with the truth-value of the rule input [22]. It 
basically cuts the output membership function at the level of the input truth. 
Slicing the top of the membership function leads to the loss of part of the 
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information in fuzzy set. In the above example the graphs show that where  
the fatality is equal to 1,575,000 persons (high) and DRI is 8.2% (high), the 
severity is 12.5 (extremely severe) when the rule 1 is activated with 0.484 
degrees of strength. This principle can apply to any possible values of the 
outputs and inputs.  

4 Conclusions 

This paper is an attempt to classify the possible scenarios of disaster impact in 
order to diagnose the severity of the disaster in its early stages of development 
where information is most scarce. In this situation the decisions need to be made 
under time pressures and with the minimum amount of primary data. Therefore a 
decision support tool is required to quickly diagnose the severity of the situation 
based on the data available. To that end in this paper a decision support tool is 
designed targeting two groups of decision makers. The first tool (DSA) is a 
simple framework based on previous disasters and the socio-economic 
characteristics of the affected community. It is constructed from a simple chart 
that can be used by any decision maker without mathematical background. 
Another significance of this framework is that its linguistic values and 
boundaries could be altered according to the situation. It enables the decision 
makers to narrow the various classes of severity and estimate the severity of the 
situation with more precision if required. The paper also explains the preliminary 
steps to simulate the DSA in a fuzzy classification system which can be used by 
a more technical decision maker and accommodate imprecise values and map the 
disaster severity. The result could assist the decision makers to more accurately 
address and diagnose the severity of the situation and reduce the risk of failure in 
disaster response operation. The study also faces the issue of data limitations. 
First the data from various sources show discrepancies. In many cases the data 
provided in the Munich RE and EM-DAT databases and the NetCatService 
database report different statistics. Although this weakness is partially addressed 
by the use of fuzzy logic, which is designed for imprecise data, it is noteworthy 
to remember the inconsistency of the reported data. Also the processed data is 
drawn from 61 natural disasters with the most destructive magnitudes. Although 
these amounts of data are sufficient for statistical interpretation, more data needs 
to be processed for building a rich knowledge base for defining fuzzy rules. The 
data also excludes man-made disasters. However the results to some extent are 
extrapolatable to any types of disasters. This study is part of an extensive on-
going research, which attempts to reduce the risk of failure in humanitarian 
response networks by developing a scenario-based decision framework for 
disaster partner configuration.   
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