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Abstract 

While data clustering algorithms are becoming increasingly popular across 
scientific, industrial and social data mining applications, model complexity 
remains a major challenge. Most clustering algorithms do not incorporate a 
mechanism for finding an optimal scale parameter that corresponds to an 
appropriate number of clusters. We propose , a kernel-density 
smoothing-based approach to data clustering. Its main ideas derive from two 
unsupervised clustering approaches – kernel density estimation (KDE) and 
scale-spacing clustering (SSC). The novel method determines the optimal 
number of clusters by first finding dense regions in data before separating them 
based on data-dependent parameter estimates. The optimal number of clusters is 
determined from different levels of smoothing after the inherent number of 
arbitrary shape clusters has been detected without a priori information. We 
demonstrate the applicability of the proposed method under both nested and 
non-nested hierarchical clustering methodologies. Simulated and real data results 
are presented to validate the performance of the method, with repeated runs 
showing high accuracy and reliability. 
Keywords: BASINS -1, data clustering, data mining, kernel density estimation, 
local optimization, scale-space clustering, supervised learning, unsupervised 
learning. 
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1 Introduction 

Real-world objects are composed of different structures with different levels of 
detail. An object may therefore appear differently depending on the scale 
of observations. Lindeberg [1] described the framework which makes it possible 
to analyse a scene of an object at any scale level or in fact, at all scale levels 
simultaneously, as multi-scale representation of the scene. Such a representation 
is composed of successive versions of the original dataset or coarser scales. It is 
assumed then, the bigger the scale, the less information referred to local 
characteristics of the input data will appear. Also it is imposed that the general 
information applying to large scales will last through scale (causality). Taking 
that into account, it is reasonable to think that local and high resolution scale 
information can be related to general and low resolution information. We present 
this reasoning in a data clustering context focusing on “interesting” data features 
typically described by modes (local maxima), anti-modes (local minima) and 
bumps. As in Lindeberg [1], given independently identically distributed random 
vectors ሼݔଵ, ,ଶݔ … , ሽݔ ∈ Թௗ, the scale-space filtering approach to clustering 
requires that the function መ݂௧ሺݔሻ correspond to a smooth indicator function ܫሺݔ;  ሻݐ
generated by convolution of the original data with a Gaussian kernel and a fixed 
isotropic scale parameter ݐ  0 provided that semi group property holds. As the 
scale increases, መ݂௧ሺݔሻ and/or ܫሺݔ;  ሻ yield an increasingly coarser structure withݐ
fine details disappearing with an increasing scale (causality). The number of 
maxima in the data tends to decrease due to merging with other critical 
points – i.e., ݐ → 0 the local maxima tend towards the number of observations, n, 
and as ݐ → ∞ they tend towards a single local (global) maximum. Each local 
maximum defines a cluster and so for a fixed t each mode produces a clustering 
pattern by which each ሼݔଵ, ,ଶݔ … , ,ିଵݔ ሽݔ ∈ Թௗ can be assigned to a cluster 
መ݂
௧ሺݔሻ.  

     We propose two clustering approaches that find dense regions in data based 
on density estimation and our novel notion of inverted rainfall basins 
ሺBASINS ଵሻ. The  main  idea  of   is that if we imagine a raindrop falling 
into a point ࢞ ∈ Թࢊ, then we can define an inverted rainfall basin of each mode 
as the region of all points for which raindrops fall under gravity to the 
corresponding local minimum of െ መ݂

௧ሺݔሻ. The basins can be found by an iterative 
mode-seeking algorithm such as gradient ascent and so we can associate almost 
every point ݔ ∈ Թௗ with a unique mode. The paper is organized into four 
sections – with the methods in Section 2, implementation in 3 and concluding 
remarks in 4. 

2 Methods 

The  approach to data clustering has statistical links to two 
conventional methods to data clustering – the Kernel Density Estimation (KDE) 
(Silverman [2]) and the space-scale theory (Witkin [3]) described below.  

166  Risk Analysis IX

 
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 47, © 2014 WIT Press

-

ሺBASINS ଵሻ  -

ሺBASINS ଵሻ  -



2.1 Kernel density estimation (KDE)  

KDE is a well-documented method (Bowman and Azzalini [4], Wand and Jones 
[5] and Scott [6]). Given a sample ݔ ∈ Թௗ from some unknown density, the 
general form of a multivariate kernel density estimate at ݔ is computed as 
 

መ்݂ ሺݔሻ ൌ ݊ିଵ ∑ ݔ௧ሺܭ െ ሻݔ

ୀଵ                                         (1) 

 
where T is a symmetric positive defined d by d bandwidth matrix ܲܦ ሺܵௗሻ and K 
is a d-variate function (the kernel), usually assumed to be a pdf where  
 

ሻݕሺ்ܭ ൌ |ܶ|ିଵ ଶ⁄ ൫ܶିଵܭ ଶ⁄  ൯                                        (2)ݕ
 

     The kernel is generally taken to be an even, ܭሺݔሻ ൌ  ሻ boundedݔሺെܭ
function, centered and scaled to satisfy the relationships Թܭݔሺݔሻ݀ݔ ൌ
0	and	Թݔݔ

்ሺݔሻ݀ݔ ൌ ܿܫ where ܿ is a constant. The global bandwidth kernel 
estimator (1) is equivalent to a mixture density with the function K(*) equally 
weighted and centered at each ݔ. If ܭሺ∗ሻ is assumed to be a density function, 
then መ்݂ ሺݔሻ is nonnegative and integrates to unity. Using a fully parameterized T 
increases the complexity of the estimation and, in practice, the bandwidth matrix 
T is chosen either as a diagonal, ܶ ൌ diagሾݐଵ, ,ଶݐ … , ,ିଵݐ  ሿ or proportional toݐ
the identity matrix T=tI.  
     The kernel estimator is a sum of the height of bumps placed at the 
observations. That is, the kernel K determines the shape of the bumps, while the 
bandwidth t determines their width. Employing only one bandwidth parameter, 
the kernel density estimator (1) becomes the well-known expression (3) in 
Silverman [2]. 
 

መ݂
௧ሺݔሻ ൌ

ଵ

௧ మ⁄ ∑ ௧ܭ ቀ
௫ି௫
௧భ మ⁄ ቁ


ୀଵ 												                             (3) 

 
     The bandwidth t, also called the smoothing parameter is a rescaling factor 
which determines the extent of the region over which the probability mass for a 
point ݔ is spread and also controls the degree of smoothing. A small value of t 
lead to under-smoothed estimates (spurious peaks), while a large value leads to 
over-smoothed estimates (masking effect). Thus, the quality of a kernel density 
estimator depends on a choice of the smoothing parameter t. One way to estimate 
an optimum value of t is by measuring the mean of the squared error between the 
density and its estimate integrated over the domain of definition (MISE), i.e., 
 

ܧԹ ቀ መ݂௧ሺݔሻ െ ݂ሺݔሻቁ
ଶ
 (4)                                        ݔ݀

 
     However, only an asymptotic approximation of this measure (AMISE) can be 
estimated. An objective or data-driven choices of t can be made, for which a 
wide range of methods have been proposed and described in detail as in Wand 
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and Jones [5]. The usual approach in constructing the KDE is to fix the kernel 
 ሻ and then assess the bandwidth t given data. Silverman [2] notesݔሻ in መ݂௧ሺݔሺܭ
that although the shape of the resulting KDE does not depend on a choice of 
origin and is relatively insensitive to the exact form of the kernel, the choice  
of the bandwidth t is by far more important than the shape of the KDE. Our 
proposed approach based on the multivariate Gaussian kernel density 
 

ሻݔሺீܭ ൌ ሺ2ߨሻିௗ ଶ⁄ exp ቄെ
‖௫‖మ

ଶ
ቅ                                     (5) 

 
     We define local modes or clusters of the data at scale t, whereby, analogous to 
the identity መ݂௧ሺݔሻ ≡  we define a novel identity based on “rainfall ,ݏݎ݁ݐݏݑ݈ܿ
basins”. Each rainfall basin forms a cluster which can be found by an iterative 
mode-seeking algorithm with almost every point ࢞ ∈ Թࢊ (except for saddle 
points and points converging to them) being associated with a unique mode. 

2.2 Scale-space approach to clustering 

A continuous multi-scale representation for a measured signal is obtained by 
embedding a continuous, bounded and integrable signal መ݂ሺݔሻ, ݔ ∈ Թௗ into a  
one-parameter family of derived signals (the scale-space) where the scale 
parameter ݐ ∈ Թା is intended to describe the current level of scale (Witkin [3]). 
Thus, given a signal ݂:Թ → Թ, the scale-space representation ܫ: Թ ൈ Թା → Թ is  
 

;ݔሺܫ ሻݐ ൌ ;ݔሺீܭ ሻݐ ∗ ݂ሺݔሻ ൌ  ;ߦሺீܭ ݔሻ݂ሺݐ െ ߦሻ݀ߦ
ஶ
ିஶ                   (6) 

 
where ீܭሺݔ;  ሻ is the one dimensional Gaussian kernel defined asݐ
 

;ݔሺீܭ ሻݐ ൌ
ଵ

√ଶగ௧
exp ቄെ

௫మ

ଶ௧
ቅ ; ݔ ∈ Թ, ݐ  0                           (7) 

     As ݐ  0 the scale-space representation ܫሺݔ; ሻݐ → ݂ሺݔሻ	݂݅	݂ሺݔሻ is continuous. 
The main idea behind this construction of the Gaussian scale-space 
representation is that the fine-scale information should be suppressed with 
increasing values of the scale parameter ݐ. Intuitively, when convolving a signal 
݂ሺݔሻ with a Gaussian kernel ீܭሺݔ;  ሻ the effect is to suppress most of theݐ
structures in ݂ሺݔሻ with a characteristic length less than ݐଵ ଶ⁄ . Lindeberg [1] 
highlights a number of intuitive demands associated with a multi-scale 
representation such as the semi-group property, rotation invariance, homogeneity 
and isotropy, separability and scale invariance. We focus on the property 
 

௧భା௧మ݂ܮ ൌ ,௧మ݂൯ܮ௧భ൫ܮ ∀: :∀	ୀଵ,ଶݐ ݂                                (8) 
 
     The foregoing property ensures that one can implement the scale-space as a 
cascade smoothing, which means that, if two kernels convolved with each other 
the resulting kernel is of the same family. Since each scale-space is simply a 
family of Gaussian kernel smoothes indexed by the bandwidth ݐ,	 instead of 
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choosing one level of smoothing, one should consider the full range of smoothes 
(the whole scale-space) which corresponds to viewing the data as a number of 
different levels of resolution, each of which may contain useful information. This 
concept allows to practical solution to the classical problem of choice of the level 
of smoothing (bandwidth) when it can be viewed in an entirely new way.  
Scale-space filtering-based approaches to clustering go back some years with 
examples in Wilson and Spann [7] who proposed an iterative algorithm based on 
the estimation theory. Their method is a unification of location and mode 
estimation achieved by considering the effect of spatial scale on estimator. They 
consider an important shift in the evaluation of the clustering problem in which 
they require estimates of valid structure within a dataset to be robust to both the 
presence of outliers and to spatial scale changes of the data. This idea was further 
developed by Roberts [8] who developed a scale-space filtering-based approach 
for assessing the probable number of clusters within datasets based on  
the computation of maxima of the scale-space representation ሺݔ;  ,ሻ. Effectivelyݐ
the approach utilises methods in Lindeberg [1] for extracting robust structures in 
data and it may be seen as falling within the hierarchical clustering methods 
based on successive smoothing using a Gaussian kernel function. A combination 
of the foregoing notions was later developed by Leung et al. [9], by mimicking 
how human eyes unravel intrinsic structures in images.  
     Clustering by scale-space filtering performs clustering through a blurring 
(smoothing) process, which treats an image as a dataset with each data point 
being a light point attached with a uniform luminous flux. We illustrate our 
approach to clustering via hierarchical clustering in scale-space as follows. The 
generalized function for the empirical distribution for  ݔ ∈ Թ is  
 

݂ሺݔሻ ൌ ݊ିଵ ∑ ݔሺߜ െ ሻݔ

ୀଵ                                      (9) 

 

     i.e., for ݐ  0 the smoothed function ܫሺݔ;  ሻ in (6) is a convolution of the formݐ
 

;ݔሺܫ ሻݐ ൌ ;ݔሺீܭ ሻݐ ∗ ݂ሺݔሻ                                    (10) 
 

     Thus, data clusters may be defined as peaks in ܫሺݔ;  ሻ and hence the numberݐ
of clusters and their locations may be evaluated from the peaks of ܫሺݔ;  ሻ or theݐ
positive-negative zero-crossings of its spatial derivative. Finding the set of zero-
crossings of ߲ܫሺݔ; ሻݐ ⁄ݔ߲  is equivalent to estimating the positions of the extrema 
of ܫሺݔ; ;ݔሺܫ ,ሻ. As the scale increasesݐ  ሻ represents a coarser structure. So byݐ
applying this scale-space filtering process, a family of smooth images ܫሺݔ;   ሻ isݐ
 

;ݔሺܫ ሻݐ ൌ ݊ିଵ ∑
ଵ

√ଶగ௧
exp ቄെ

ሺ௫ି௫ሻ
మ

ଶ௧
ቅ

ୀଵ                          (11) 

 
     Stationary points of ܫሺݔ;  ሻ can be determined by taking the spatial derivativeݐ
below and setting to zero 
 

డூሺ௫;௧ሻ

డ௫
ൌ ሺ݊ݐሻିଵ ∑

ሺ௫ି௫ሻ

√ଶగ௧
ݔ݁ ቄെ

൫௫ି௫
మ൯

ଶ௧
ൌ 0ቅ

ୀଵ                  (12) 
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     The variation in local maxima as the kernel density bandwidth parameter 
varies presents a major data clustering challenge. Balancing the lower scale 
(potential “spurious” information or over-fitting and the higher scale (potential 
information “masking” or under-fitting (as in Figure 1) – constitutes our main 
motivation. We now introduce our proposed clustering methodology  
(BASINS-1).  

 

 

Figure 1: Kernel density estimates for different scales for the iris data. 

2.3 Our proposed clustering approach – BASINS-1 

Insight into the BASINS-1 methodology comes from two traditions in statistics 
and signal processing – namely Kernel density estimation (KDE) (Silverman [2]) 
and scale-space theory (Lindeberg [1]). KDE cluster centers are derived by local 
mode seeking identifying maxima in the normalized density of the dataset while 
under the scale-space theory, they are identified in different scales – typically 
finding an important underlying structure at several different levels of 
smoothing. Our proposed strategy relates the optimal number of clusters to 
different levels of data smoothing (bandwidth). Thus, we describe the novel 
clustering approach based on the local extrema (minima and maxima) of a 
density function for a fixed bandwidth and how these local extrema vary as the 
bandwidth varies. We show that for a small bandwidth ݐ,	there will be n local 
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maxima, one converging to each data point as ݐ → 0 and hence the method is 
independent of initialization. Further, each local maxima lies between two local 
minima – that is, there are n local maxima and n+1 local minima including	േ∞. 
In this case the smoothing function ܫሺݔ;  presents a series of n steep ݐ ሻ at smallݐ
hills centered at each of the data points and as ݐ → ;ݔሺܫ	∞  ሻ will become a curveݐ
with one global maximum which means that all data points merge together to 
produce one cluster determined by its global maximum. To describe the 
clustering process, first we need to present some definitions: 
 Let n୲ be the number of local maxima at scale t. Then, for small t,	

n୲ ൌ n.  
 Let m୧ሺtሻ, 1  i  n୧ denote the values of the local Iሺx; tሻ at scale t such 

that for small t,m୧ሺtሻ → x୧ as t → 0.	 Hence, there are n୲ ൌ n local 
maxima and the notation is unambiguous. 

 Let π୨ ∈ ሼ1… 	nሽ be the local maximum which disappears through t୨ and 
n୲ decreases by 1 at t୨. 

 Strictly speaking mπ୨ሺtሻ is undefined for t   ୨. Hence for labelingݐ
purposes we set mπ୨ሺtሻ ൌ ∆ where ∆ denotes a “coffin bin” for t   .୨ݐ

     One of the scale-space properties stipulates that there exist “smooth paths” 
݉గሺݐሻ ∈ Թ that link the local maxima together at different levels of scale ݐ.	 The 
paths (Figure 3) are called “maximal curves” ݉గሺݐሻ, 0  ݐ  ݐ ൏ ∞ such that: 
 m୧ሺtሻ present cluster locations at scale t.  
 No new local maxima can appear as t increases (causality). 
 At scale t, n െ n୲  values of m୧ሺtሻ take the value Δ. 

     The local extrema of (12) can produce a pattern of clustering of a smoothed 
scale-space representation ܫሺݔ;  by which each data point ݐ ሻ at a given scaleݐ
ݔ ∈ Թ can be allocated to a cluster based on the notion of “inverted rainfall 
basins” (BASINS-1). The basins can also be referred to as “domains for 
attraction” as they attract the set of all local maxima for an increasing scale ݐ to 

the same mode. Hence, for a small ݐ we can define a family of domains ܦ
ሺ௧ሻ, as 

intervals between local minima, exist for 0 ൏ ݐ ൏  :such that	,ݐ
 For small enough ݐ if ݔݏ are in increasing order, each ݔ has a 

corresponding ܦ
ሺ௧ሻ.  

 As ݐ → 0, ܦ
ሺ௧ሻ converges to an interval, ቂ

௫షభା௫
ଶ

,
௫ା௫శభ

ଶ
ቃ including േ∞.  

 ܦ
ሺ௧ሻ is defined for ݉గሺݐሻ ് Δ	.  

 Given scale ݐ,	 for each local maximum ݉ሺݐሻ, ݆ ൌ 1…݊௧, there exists a 
"domain of attraction" ܦழଵ

ሺ௧ሻ . 

     We can now define ܥ
ሺ௧ሻ clusters at each scale ݐ where each ܥ

ሺ௧ሻ is 

determined by its local maximum ݉ሺݐሻ ് Δ such that ܥ
ሺ௧ሻ is the union of 

domains over the local maxima 
 


ሺ࢚ሻ ൌ ⋃ ࡰ

ሺ࢚ሻ
ࡰ∋ሻ࢚ሺ

ሺ࢚ሻ                                         (13) 
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     As ݐ passes through ݐ; ଵݐ	 ൏ ଶݐ ൏ ⋯ .൏ ܥ  one of the clustersݐ
ሺ௧ሻ disappears 

and gets re-allocated to merge with the left or right ܦ
ሺ௧ሻ such that ݉ሺݐ

ିሻ ∈

ܦ
൫௧శ൯

 and at the limit (threshold ݐ), ܥ
ሺ௧ሻ ൌ ܦ

൫௧శ൯
. That is, if we regard ݐ as a 

merging threshold, then the scale-space evolution of local maxima in ܫሺݔ;  ,ሻݐ
may be regarded as a form of dendogram - a tree showing a sequence of 
clustering. As the scale ݐ changes, a hierarchical clustering is formed with a 
dendogram output similar to that formed from ordinary hierarchical clustering 
methods. Thus, clustering of each datum amounts to evaluating which “domain 
of attraction” each ݔ belongs to. Figure 2 provides a graphical illustration of 
hierarchical clustering in the context of our proposed method. 
 

 

Figure 2: Steep hills (LHS) and one global maximum (RHS). 

     As in Leung et al. [9], hierarchical clustering may be categorised into nested 
and non-nested. In the former, once a cluster is formed, its members cannot be 
separated as ࢚ increases while in the latter, each datum in a formed cluster may 
change its boundaries with changing scale. The underlying mechanics of 
BASINS-1 can be described under both forms of hierarchical clustering. 

2.3.1 BASINS-1 under nested hierarchical clustering 
The main idea here is that changing the scale ݐ and looking at each scale ݐ 
separately produces a nested hierarchical clustering ܥ

ሺ௧ሻ, where once any two 
clusters merge, they stay merged. The nested hierarchical clustering process 

based on ܦ
ሺሻ can be described as follows. For small ݐ, ܥ

ሺ௧ሻ ൌ ܦ
ሺሻ as ݐ passes 

through ݐ,	and for some ݅, ݉గ൫ݐ൯ ∈ ܦ
ቀ௧ೕ
శቁ

 set ܥ
ቀ௧ೕ
శቁ
ൌ ܥ

ቀ௧ೕ
షቁ
గܦ⋃

ሺሻ, where 
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other ܥ
ቀ௧ೕ
శቁ

remain unchanged as ݐ passes through ݐ – i.e., constant clusters for 
ݐ ൏ ݐ ൏  ାଵ. The process follows the following stepsݐ
 
 0 ← ሺStep	1ሻ → ଵݐ ← ሺStep 2ሻ → ଶݐ ← ሺStep 3ሻ → ⋯ ← ିଵݐ

← ሺStep nሻ → ݐ
(14) 

 
 
where at the last step, ݊, only one local maximum is left – the global maximum 
and described as follows. 

1) Start with ݊ domains of attraction, ܦ
ሺశሻ ൌ ܥ

ሺௌ௧	ଵሻ, ݅ ൌ 1, 2, … , ݊ െ 1, ݊. 

2) At scale t ൌ tଵ, the cluster Cሺଵሻ
ሺୗ୲ୣ୮	ଵሻ disappears as it is absorbed into an 

adjacent cluster (left or right), Cሺଵሻ
ሺୗ୲ୣ୮	ଵሻ,	 say, which means that the local 

maximum ݉ଵሺݐଵሻ ∈ ሺଵሻܦ
൫௧భ
శ൯

 - that is, for ݐ a bit bigger than ݐଵ,݉ଵሺݐଵሻ 

disappears and hence falls into another domain ܦሺଵሻ
൫௧భ
శ൯
.  

3) For ݐଵ ൏ ݐ ൏ ݇	and	ଶݐ ൏ ݈	 two clusters are merged as 
 
 

 

ە
ۖ
۔

ۖ
ۓ ሺሻܥ

ሺௌ௧ ଶሻ ൌ ሺሻܥ
ሺௌ௧ ଵሻ ݂݅ ݇ ് 1 or ݈

ሺሻܥ
ሺௌ௧	ଶሻ ൌ ߶

ሺሻܥ
ሺௌ௧ ଶሻ ൌ ሺଵሻܥ

ሺௌ௧ ଵሻራ ሺଵሻܥ
ሺௌ௧ ଵሻ

 

 (15) 
 

   
 
4) Repeat step 3 until at t ൌ t୬ all clusters merge into one cluster. 

2.3.2 BASINS-1 under non-nested hierarchical clustering 
As in the previous case, changing the scale ݐ continuously and looking at the 
range of continuous changes of ݐ ൏ ݐ ൏  ାଵ produce a non-nested hierarchicalݐ

clustering ܥ
ሺ௧ሻ where boundaries may move. The non-nested  

hierarchical clustering process is described by ܥ
ሺ௧ሻ ൌ ܦ

ሺ௧ሻ and defined for  

݅ ∈ ሼ1,2…݊ െ 1, ݊ሽ such that ݉ሺݐሻ ് ∆	. All clusters ܥ
ሺ௧ሻ at a given scale ݐ are 

unions of the initial clusters ܥ
ሺሻ ൌ :ݔ ∀. We require that “true” clusters in the 

dataset be stable over a range of scale parameters, ݐ. 

2.3.3 Obtaining the optimal scale parameter 
In order to determine the optimal scale parameter ݐሺ௧ሻ,	 the Gaussian kernel is 
essential as it is the only kernel which does not introduce new maxima as the 
scale increases (Babaud et al. [10]; Koenderink [11]; Roberts [8]; Silverman [2] 
and Yuille and Poggio [12]). We suggest the following simple method: 
 

1) For the Gaussian kernel, it can be shown in one dimension that the 
number of modes, ݊௧, say, is a decreasing function of the bandwidth, ݐ.  
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2) Given ߚ,	 let ݐ௫ሺߚሻ	and	ݐሺߚሻ denote the maximum and minimum 
scales respectively yielding ߚ clusters. Further, let ݎሺߚሻ ൌ ሻߚ௫ሺݐ െ
values over which ݊௧ ݐ ሻ denote the range ofߚሺݐ ൌ  	.ߚ

3) We simply look for values ߚ for which ݎሺߚሻ (linear in ߚ) is the largest 
(Figure 4). Thus, we can then set the optimal scale parameter as 

 
 

௧ݐ ൌ
ሻߚ௫ሺݐ  ሻߚሺݐ

2
 

 (16) 
 

   

3 Implementation of the method, results and discussions 

We analyse both simulated and real data. For the former, we ran the algorithm 
over 100 simulations for each distribution in Table 1. 

Table 1:  Normal distribution with corresponding smoothing parameters. 

No  
Density fሺxሻ= pl∅σi

൫x-μi൯

J

j=1

 
 
Sample 
size ݊ 

1 One 
Gaussian 

Nሺ0,1ሻ 100 

2 Two 
Gaussian 

1

2
Nሺ0,1ሻ+

1

2
Nሺ3,1ሻ 

200 

3 Three 
Gaussian 

1

3
Nሺ0,1ሻ+

1

3
Nሺ3,1ሻ+

1

3
Nሺ6,1ሻ 

300 

4 Skewed 
Unimodal 

1

5
Nሺ0,1ሻ+

1

5
N ൬

1

2
,
4

9
൰+

3

5
N ൬

13

12
,
25

82
൰ 

300 

5 Skewed 
Bimodal 

3

4
Nሺ0,1ሻ+

1

4
N ൬

3

2
,
1

9
൰ 

200 

6 Trimodal 9

20
N ൬

-6

5
,

9

25
൰+

9

20
N ൬

36

25
,

9

25
൰+

1

10
N ൬0,

1

16
൰ 

600 

7 Claw 1

2
Nሺ0,1ሻ+

1

10
N ൬

i

2
-1,

1

100
൰

4

i=0

 
300 

8 Smooth 
Comb 

25-i

63
N൭65-96*

i2

2
,
32

63ൗ

22i ൱

5

i=0

 
300 

 
     The values of ݐ were obtained by a sequence of length 200, uniformly spaced 
and for the modes, the kernel density estimates were computed over an equally 
spaced grid of 500 points. The values in the table represent 8 different normal 
densities, each of which can be expressed as mixture distribution as follows. 
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݂ሺݔሻ ൌ ∑ ݔ∅ఙሺ െ ሻߤ

ୀଵ                                      (17) 

 
     Here ܲ ൌ ൛൫ଵ, …… , ∑	:൯ ൌ 	:1  0,			݆ ൌ 1,2, … . , ܬ െ 1, ܬ

ୀଵ ൟ are the 

mixture component proportions, whereas  ൛ߤൟୀଵ


	and	൛ߪൟୀଵ


 are the population 

mean and variance of the normal density in (17) respectively. The clustering 
results are in Figure 3.  

 

Figure 3: Paths of maximal curves through scale t. 

     As noted earlier, the “smooth paths” ݉గሺݐሻ ∈ Թ linking the local maxima 
together at different levels of bandwidth are necessary for cluster detection. 
Figure 3 presents these paths (maximal curves) at variable bandwidths 
݉గሺݐሻ, 0  ݐ  ݐ ൏ ∞ whereby each m୧ሺtሻ is a cluster location at scale t with 
no new local maxima appearing as the bandwidth t increases – avoiding spurious 
clusters. The results in Figure 3 correspond to the simulated data points in Table 
1 and they provide an insight into the mechanism and movement of maximal 
curves as a function of the bandwidth. Note how the maximal curves vanish as 
they are siphoned into the nearest maximal curve based on the adopted  
density – i.e., the higher the density the longer the duration. For this reason, the 
number of maximal curves (clusters) decreases sequentially, until the last 
maximal curve (cluster) – one with the highest density is reached.  
     Note that for one Gaussian density, it is somewhat difficult to distinguish 
between the duration of two and three modes. Also, the underlying distribution 
of the duration of local maxima for four modes and more yields less than four 
local maxima indicating that the data consists of one mode. The duration of two 
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local maxima is the longest for the two-Gaussian density while that of three local 
maxima is the longest for the three-Gaussian density. For the skewed unimodal 
density, two modes seem to dominate – suggesting that two modes are clearly 
considered for a skewed unimodal density. For the trimodal density, the size of 
middle cluster is somewhat smaller than the other two and not well separated 
from them - the longest duration is noted for two local maxima. As we get to the 
most difficult cases, the plot suggests one mode for the claw density with  
the durations of other local maxima standing very close to each other and not 
disappearing fast as is the case in the other densities. For the smooth comb 
density, the longest duration of mode is for two, three and four  
modes – sequentially. The reason for this is that the first two clusters are well 
separated in comparison with the rest of the clusters. However this pattern is not 
sustained as the number of clusters increase. Based on plots of median modes for 
the majority of the underlying densities, we found that the number of local 
maxima increases sharply as long as the real structure of the densities is 
smoothed away. Figure 4 presents clustering results of the real data – petal-width 
of iris data (Fisher [13]). 

 

Figure 4: The number of local maxima for an increasing scale (LHS) and the 
corresponding positions of local maxima from the iris data  
(petal width) (RHS). 

     The two panels in Figure 4 are both based on the iris data (petal width) and 
they highlight the crucial issue of choosing the optimal scale parameter ݐሺ௧ሻ,	 
based on the Gaussian kernel and our proposed method as described above. The 
maximal curves and density durations can be assessed based on the bandwidth 
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and it can clearly be seen (RHS panel) that the number of modes ݊௧ is a 
decreasing function of the bandwidth. The LHS panel plots the scale size against 
the number of solutions (clusters) and it can be seen that range of scale size 
0.175 to 0.490 corresponds to three clusters. The optimal scale size is defined on 
the range ݎሺߚሻ ൌ ሻߚ௫ሺݐ െ ሻ over which ݊௧ߚሺݐ ൌ  and since we look for ߚ
values ߚ for which ݎሺߚሻ is the largest, the optimal scale parameter is 
 

௧ݐ ൌ
.ଵହା.ସଽ

ଶ
ൌ 0.33                                         (18) 

 

4 Conclusion 

Determining the natural number of clusters in data is one of the most difficult 
problems in cluster analysis and the relevance and challenges of mode-finding 
algorithms in data clustering applications are well-documented. This paper 
presented a novel method (BASINS-1) for mode-finding based on conventional 
kernel and space-scale methodologies. Our proposed method was motivated by 
two conventional approaches to mode-finding – kernel density estimation (KDE) 
and scale-space theory (SST) – which we adapted to possible clustering 
approaches based on local maxima and minimal features in the data. Its basic 
idea is that modes can be associated with these important structures in empirical 
distributions. The relation between KDE and scale-space theory is  
well-investigated in the literature. The potential clustering power of the kernel 
density estimation is embedded in its estimation of the kernel from the original 
dataset and specification of an isotropic bandwidth which controls the amount of 
smoothing. These potentials were combined with the fundamental features  
of scale-space filtering (clustering) in which the kernel density መ݂௧ሺݔሻ corresponds 
to a smooth function ܫሺݔ;  ሻ  generated by convolution of the original datasetݐ
with a Gaussian kernel and a fixed isotropic scale parameter ݐ  0, provided that 
semi-group property holds. The novelty in our method derives from the fact  
that most clustering algorithms do not incorporate a mechanism for finding an 
optimal scale parameter that corresponds to an appropriate number of clusters.  
     Typically, the optimal scale parameter is normally performed via the so-called 
“strength of clusters” or “cluster validity” which quite often relies on computed 
distances among data points. Our clustering approach does not require the use of 
any “strength of clusters” criteria.  Basically, assessing the strength of clusters is 
performed by examining and comparing the duration or survival period of 
clusters for increasing scale parameter ݐ. We used simulated and real data to 
demonstrate how durations can be used to indicate the significance of a particular 
set of clusters and we were able to determine the optimal scale parameter and 
correspondingly the optimal number of clusters as a function of the longest 
lasting cluster set. We expect that the proposed approach will contribute to the 
ever growing portfolio of enhanced data mining methods for different 
applications – particularly those of a survival nature. Multi-disciplinary 
applications of the novel method on multivariate data should provide further 
validation of its accuracy and reliability (Mwitondi et al. [14]). 

Risk Analysis IX  177

 
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 47, © 2014 WIT Press



References 

[1] Lindeberg, T.: Scale-space Theory in Computer Vision, Kluwer Academic 
Publishers, Dordrecht, Netherlands (1994).  

[2] Silverman, B. W.: Density Estimation for Statistics and Data Analysis, 
Chapman and Hall, (1986). 

[3] 

[4] 

Witkin, A. P.: Scale-space Filtering, Proceedings of the Eighth 
International Joint Conference on Artificial Intelligence, Karlsruche, W. 
Germany, pp 1019-1022 (1983). 

[5] 

Bowman, A. W. and Azzalini, A.: Applied Smoothing Techniques for 
Data Analysis: The Kernel Approach with S-Plus Illustrations, Oxford 
University Press, London; New York (1997). 

[6] 

Wand, M. P. and Jones, M. C.: Kernel Smoothing, Chapman and Hall, 
(1995). 

[7] 

Scott, D. W.: Multivariate Density Estimation: Theory, Practice, and 
Visualization, Wiley, New York (1992).  

[8] 

Wilson, R. and Spann, M.: A New Approach to Clustering, Pattern 
Recognition, 23, pp 1413-425 (1990). 

[9] 

Roberts, S. J.: Parametric and Non-parametric Unsupervised Cluster 
Analysis, Pattern Recognition, 30, 5, pp 261-272 (1997).  

[10]
 

Leung, Y., Zhang, J. and Xu, Z.: Clustering by Scale-space Filtering, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 22, 12,  
pp 1396-1410 (2000). 

[11]
 

Babaud, J., Witken, A. P. and Baudin, M.: Uniqueness of the Gaussian for 
Scale-space Filtering, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 8, 1, pp 26-33 (1986). 

[12]
 

Koenderink, J. J.: The Structure of Images, Biological Cybernetics, 50,  
pp 363-370 (1984). 

[13]

 
Yuille, A. L. and Poggio, T.A.: Scaling Theorems for Zero Crossings, 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1),  
pp 15-25 (1986).  

[14]
 

Fisher, R. A.: The Use of Multiple Measurements in Taxonomic Problems, 
Annals of Eugenics, 7, 4 pp 179-188 (1936). 

 Mwitondi, K., Said, R. and Yousif, A.: A sequential data mining method 
for modelling solar magnetic cycles; Neural Information Processing, 
LNCS, Vol. 7663, pp 296-304, Springer (2012). 

178  Risk Analysis IX

 
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 47, © 2014 WIT Press




