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Abstract

The aim of this study is to investigate the relationship between environmental
variables and indoor radon concentration. Such relationships are important for
mapping the geogenic radon potential, considered as the quantity associated with
the risk of radon that only depends on the geological and geophysical conditions of
the area considered. In fact, a proper definition of the radon potential could provide
a guide for the identification of radon-prone areas, in particular when the number
and/or quality of indoor radon data are inadequate. Generally, the assessment
of radon potential is obtained via a global inference technique, assuming that
the relationship studied is spatially stationary. Our approach, instead, analyzes
the consequences associated with significant changes of the spatial relationship
between indoor radon measures, adequately corrected, and geological features.
This allows us to estimate the indoor radon concentration by considering local
environmental properties, in agreement with the geogenic radon potential of the
underlying soil. Therefore the approach followed allows us to map more precisely
any area of high radon concentration. The spatial statistic analysis has been
performed by Geographically Weighted Regression, GWR. Thanks to the indices
of spatial autocorrelation analysis and GWR, we have shown the presence of
localized effects and differences between variables in space. The final map of
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the geogenic radon potential obtained in this work provides guidance for the
identification of radon-prone areas of the territory considered and is more accurate
than that obtained in previous studies.
Keywords: radon potential, temperature, Geographically Weighted Regression.

1 Introduction

Radon is a natural radioactive gas amongst the greatest causes of population
exposure due to natural ionizing radiation [1]. The radon is product from the
decay chain of primordial radionuclides 238U, 232Th and 235U. The most abundant
isotope is 222Rn with a half-life of 3.82 days (from the chain of the 238U),
which decays itself in stable lead 206Pb through an intermediate decay chain.
The short-life isotopes products, such as 218Po, 214Pb, 214Bi and 214Po, are of
great importance for human exposure because they are easily inhaled and decay
by emitting α (a few MeV) within the human body.

The ability of radon to penetrate and accumulate in indoor environments
depends on the geological characteristics of the area considered, therefore by the
concentration of the radium in soil and the transport properties of the gas itself.
The transport is particularly affected by the permeability of the soil, ie the ability
of a fluid to pass through it.

The indoor radon concentration is also determined by climatic conditions. In
the presence of a thermal gradient between the internal and external environment,
for the stack effect, the flow of air sucked from the soil increases, and then
the amount of radon emanating. The outdoor temperature instead determines the
lifestyle of the population living environments, increasing or decreasing the airflow
and thereby influencing the natural processes of gas removal. Many countries,
including Italy, carry out campaigns of indoor radon concentration measurements
in order to identify the geographical areas in which is a greater probability of
exceeding the maximum reference values (radon prone areas) chosen so as to
minimize the risk for the population. In this study we use 757 measurements
collected from 1991 to 2011 in buildings (schools, homes, offices, etc.) in the
province of L’Aquila (5035 km2, and about 200000 inhabitants), by the Regional
Agency for the Protection of Environment (ARTA). The data are gathered with
various sampling methods in the area of interest using dosimeters and nuclear track
CR-39 [2 4].

The purpose of this paper is to analyze the heterogeneity of the relationship that
describes the concentration of indoor radon as a function of environmental and
geological features of the area studied.

For the modeling analysis we use Geographically Weighted Regression, GWR.
The local analysis allows to study the spatial variability of relationship. Moreover
it highlights areas where there are mis-specification errors, namely the regression
equation includes and/or excludes relevant factors.
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2 Selected assumptions

2.1 Log-normal distribution

The multitude of factor that influence the concentration of indoor radon can
be considered independent of each other and multiplicative, so as to justify the
usual log-normal distribution for measurements of radon concentrations in homes,
whether the whole of a country or a small area is considered [5, 6] (see Fig. 2).
Possible reasons for this deviation are due to the uncertainty of the measurement,
the background subtraction which leads to an excess of low values and problems
related to representativity sampling [6, 7]. Since extremely low values cause
problems for the lower tail distribution, we decided to correct (with factor D) the
value of concentration measured radon, the lowest values are shifted, and we left
higher values virtually unchanged [7] (Fig. 1):

Rnnewin =
Rnin −Rnout

2
+

√(
Rnin −Rnout

4

)2

+D2 (1)

The best correction factor is obtained using the D’Agostino’s normality test [8],
namely, we used Rnout and D values that maximize the p-value (null hypothesis
is the normal distribution).

Figure 1: left: Histogram of the logarithm of indoor radon data, Rnmis,
without correction for background; right: graph quantile-quantile for the normal
distribution N(0, 1) and ln(Rnmis).
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Figure 2: left: Histogram of the logarithm of indoor radon with correction for
background, Rnnewin , from (eq. 1), with Rout = 12Bqm−3 and D = 2Bqm−3.
right: graph quantile-quantile for the normal distribution N(0, 1) and ln(Rnnewin ).

2.2 Basic standardization of measurement: normalization to a virtual
ground level

In order to highlight the potential emission of the soil (the major source of
indoor radon), the measurements have been normalized to a virtual ground level
condition, employing multiplicative factors estimated from the data itself (in
accord with [2]). The conversion coefficients are evaluated as

ki→0ct =
GM (0CT )

GM (i)

where GM (0CT ) and GM (i) are the geometric means of all the measured values
related respectively to the ground floor in contact with the soil (0CT) and the ith

floor.
Hence the normalized radon concentrations are

rn_stdnew0ct = ki→0ct ∗ (Rnnewin )i

2.3 Explanatory variables

The radon standardized variable is used to define the direct relationship
between indoor radon concentration and geological, or generally environmental,
characteristics of the area of the building. The explanatory variables of indoor gas
can be divided into three groups: radiometric content of the soil, geological/geo-
morphological features of soil below and around the building and climatic
variables.
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For each of these categories we examine a factor generally predominant
(see [9]): the equivalent uranium content, the permeability of the soil and the
average annual temperature for the climate variability.

The radiometric data of equivalent uranium (eU) are determined by the signal γ
emitted by 214Bi in the ground as short-lived 222Rn decay product. The measures
come from studies conducted by Bellotti et al. [10] of 200 soil samples collected
uniformly in the Province of L’Aquila in order to estimate the activity of the rays γ
in soil and water. The permeability is directly influenced by fracturing, the porosity
and the grain size of the rocks and its components, so the average value is obtained
by combining all this information, as a kind of derived variable [9].

The annual temperature average has been calculated using data collected from
43 thermometric stations of the Hydrographic Service of the Abruzzo Region and
interpolated by kriging with external drift (altitude) [11]. These results will be
discussed in incoming submitted article.

3 Material and methods

Geographically Weighted Regression (GWR) [12, 13] is a useful technique for
modeling local spatial relationships. A typical model of GWR can be written as:

yi = β0(ui, vi) +
M∑
k

βk(ui, vi)xik + εi (2)

where yi is the dependent variable of point i with coordinates (ui, vi); βk(ui, vi)
with k = 1, . . . ,M , are regression coefficients for each point i and for each
variable k; xik is the value of k − th covariant predictor in i; β0(ui, vi) is the
intercept variable for each point i; εi is the error term in the i that follows a normal
distribution with zero mean and homogeneous variance.

In matrix form, regression coefficients are:

β̂(i) = (XTW (i)X)−1XTW (i)y (3)

where W (i) = diag[w1(i), . . . , wn(i)] is a diagonal matrix that varies for each
calibration point i and applies weights to each of the n observations. A choice for
the weight function is a Gaussian curve:

wij = exp

[
−
d2ij
2b2

]
(4)

where dij is the distance between the observed point i and N neighboring
points (j = 1, . . . , N ) and b is the bandwidth. Consequently, model calibration
involves the selection of the number of neighboring points to be included in
the estimation of local parameters (N), or the distance decay (b) of the weight
function (bandwidth). Selecting the weight matrix, the value of b which produces
the minimum of Akaike Information Criterion corrected (AICc) [14] is the optimal
bandwidth. To perform the analysis, we used the software GWR4 by Nakaya
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available at website http://gwr.nuim.ie. Through software Arcgis we mapped
the regressive coefficients estimated for each point i, the t-statistics and the R-
squared for each local model.

4 Results GWR

The spatial variables generally exhibit autocorrelation values, therefore neighbors
tend to assume similar values and among their dependent. This implies that
the usual techniques of global regression (OLS) are inappropriate to model the
phenomenon. Analytically, we can measure the spatial dependence between the
values of a variable with the global Moran’s I statistic [16], listed in Table 1:

Table 1: Moran’s I statistic and p-values (with the null hypothesis of random
distribution) for the indoor radon concentrations (log-transformed) and
the three regressive variable (eU, permeability and temperature). These
are calculated by the function moran.test() of package spdep in R [17].

I di Moran p.value

ln(rn_stdnew0ct ) 0.036 0.007

ln perm 0.247 0.000

ln T 0.432 0.000

ln eU 0.361 0.000

In agreement with what is expected, the Moran’s I for parameters is positive,
highlighting the presence of spatial autocorrelation. The available measures don’t
come from homes homogeneously distributed over the territory and spatial data
density are proportional to the density of the houses themselves. To reduce
this occurrence, it is preferable to implement a simple strategy of declustering,
consisting of aggregating measures based on membership in square blocks of side
equal to 2 km.

4.1 Discussion

Applying the GWR in our data set, we can analyze the spatial variability of the
relationship between the concentration of indoor radon, standardized at virtual
ground floor, with three main predictors: equivalent uranium concentration, soil
permeability and average outdoor temperature.
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ln(rn_stdnew0ct ) = β0(ui, vi) + βeU (ui, vi) ln(eU)i+

+βperm(ui, vi) ln(permeability)i + βtemp(ui, vi) ln(temperature)i + εi
(5)

The GWR models show an improvement of the fit of the data with respect
to multivariate linear regression (OLS), with regression coefficient constant,
evidenced by the reduction of diagnostic test AIC, AICc, RSS (sum of squared
residuals), R2 and correct version R2

adj (Table 2).

model R2 R2
adj AIC AICc RSS

OLS 0.011 0.005 2000.747 2000.833 686.261

GWR 0.103 0.052 829.775 831.011 259.311

Table 2: Summary of characteristics for fitting regression models.

GWR allows us to explore the spatial non-stationarity of the radon
concentration, intimately connected with the local characteristics of the area.

In the Fig. 3 the maps show significant spatial variability of regression
coefficient and the associated t-values. The negative coefficients to equivalent
uranium (βeU ) in the eastern part of the territory highlight local issues of our
model, however these are the t-values are not significant (−1.96 < t < 1.96).
In a specular manner, in smaller areas (south-east and eastern tip) the coefficients
of temperature are positive, while the local statistic t is significant only in the
central part of the territory, which correspond to high values of temperature and
the correlation is positive. The regression coefficient of permeability is, however,
always positive in line with the physical analysis, the t-values follow a trend similar
to that for βeU .

Finally, we report in Fig. 4 the spatial variation of the local coefficient of
determination R2, which is a characteristic of the goodness of fit. For the radon
studies, low R2 values are typical (see for example Pasculli et al. [9]) due to a
multifactorial dependency difficult to calculate. However, the results in our studies
are satisfactory for the area to the south-east of the province and in the western
part of the region (R2 = 0.18). Note that the values of R2 improve at both of
the areas where the coefficients t-values have no abnormalities and, except for
the temperature, can be considered significant (|t| > 1.64, p-value < 0.10).
Our analysis also highlights the need to deepen and improve the survey in the
eastern part of the area, given the difficulty in the description of the phenomenon
(R2 < 0.07). The introduction of the analysis of variability due to characteristics
of the building will lead to a improvement of description.
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Figure 3: Maps of local regressor coefficients (coloured spots): a) intercept (β0),
b) βeU , c) βperm, d) βtemp; maps of t-statistics for a) β0, b) βeU , c) βperm,
d) βtemp.
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Figure 4: Distribution of local R2.

5 Conclusions

This work aimed to defined a map of the geogenic radon potential (PRG),
which is directly related to the risk of radon [18, 19]. We studied the
relationship between the concentration of indoor radon (dependent variable) and
the geophysical/environmental features of region (independent variables), using
a local regression in order to highlight the importance of local condition to the
determination of the gas concentration . The measures of the radon have been
normalized to a virtual ground floor and analyzed with the GWR.

This enabled us to generate maps for the regression coefficients overcoming
the uniformity of a global regression. Moreover, this approach allows to highlight
areas where our model did not apply correctly, due to mis-specification errors
and/or the quality of the available dataset. In future work we will analyze the
component of variability due to the building features by the multilevel analysis, in
order to better specify the amount PRG. The aim is to map the risk of radon even in
areas where there are no measurements of radon and to provide information to the
competent authorities for the establishment of an action plan for radon (Art. 103,
Directive 2013/59 Euratom [20]).
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