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Abstract 

In hydrological practice, the design values of extreme rainfalls are generally 
estimated by means of frequency analysis applied to a finite sample of extreme 
rainfall values. The most usual approach taken in such analysis is to fit a 
statistical distribution to an annual maximum series (AMS) built upon one value 
per year. As an alternative approach, the peaks-over-threshold (POT) technique 
considers all the peak values above a given threshold and thusly allows for a 
more rational selection of events to include in the frequency analysis.  The 
research presented in this paper reviews the relative merits of the two 
aforementioned approaches by analyzing the confidence intervals of extreme 
rainfall quantiles that result from their application. Despite the usually larger 
extreme value sample sizes made possible by the POT technique, the estimation 
of design values by such approach requires the analysis of both the magnitude 
and the times of arrival of extreme rainfall events. Hence the uncertainty 
associated with the estimated quantiles results from the combination of the two 
models applied to ascertain the magnitude and the frequency. Using daily rainfall 
data samples from Portugal and from Paraguay, four statistical models are 
applied (two AMS models and two POT models) and a comparison of the 
estimated quantiles is made. Furthermore, quantile confidence intervals were 
constructed using both asymptotic theory and the Monte Carlo simulation 
technique. Such intervals assume an important role in hydrological risk analyses, 
as they enable the assessment of the uncertainties associated with estimating 
distribution parameters and quantiles from finite samples of extreme rainfalls. 
The research was carried out in the scope of the European joint project CapWEM 
– Capacity development in Water Engineering and Environmental Management 
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– in which eight partner institutions from European and Latin American 
countries collaborate on improving higher education in the fields of Water and 
Environmental Management. 
Keywords: quantile confidence intervals; peaks-over-threshold; Monte Carlo 
simulation. 

1 Introduction 

Extreme rainfall events are associated with the risk of infrastructure failure and 
loss of human lives. Nowadays, studies on the planning, design, and operation of 
water resources systems often require a comprehensive understanding of the 
probabilistic behaviour of extreme rainfall events. In general, such behaviour is 
characterized via frequency analysis applied to the extreme values of rainfall 
time series, which are treated as random variables. Design rainfall values are 
usually estimated as quantiles, Fx , with a predetermined non-exceedance 
probability, F, of a statistical distribution function that has been fitted to the data 
and is assumed to adequately describe the probabilistic behaviour of the random 
variable,  θ|xFX , k1 ,,  θ  being the distribution parameters. Evidently, 
the point estimator Fx̂  is subject to errors resulting from uncertainties that are 
intrinsic to the estimation of parameters and quantiles on the basis of finite data 
samples.  
     A convenient approach to account for the aforementioned uncertainties 
consists of constructing  1100 % confidence intervals for the estimated FX̂  
quantiles, being  1  the confidence level, as they summarize the uncertainties 
associated with estimating distribution parameters and quantiles due to sampling 
variability, and hence they can indicate the accuracy of the estimates [1]. 
However, they do not enable the assessment of the uncertainties related to the 
selection of the probabilistic model,  θ|xFX . 

     The construction of quantile confidence intervals often uses asymptotic 
theory, which can show that, regardless of the selected model  θ|xFX , the 
quantiles Fx , are asymptotically Normal with mean Fx̂  and standard deviation 

Fs . The latter value corresponds to the standard error of the estimate and can be 
expressed as a function of the variances and covariances of the estimated 
parameters and of the partial derivatives of the quantile function. This approach 
may involve complex analytical procedures, especially when the probabilistic 
model consists of a three-(or more)-parameter distribution.  
     As an alternative to the asymptotic theory, one can employ computer-
intensive simulation procedures, such as the Monte Carlo simulation technique 
and bootstrap techniques. In broad terms, such techniques involves the 
estimation of a large number of quantile curves, based on generated data samples 
with a length equal to that of the original sample.  
     For a given non-exceedance probability, F, and a fixed confidence level 
 1 , the amplitude of the  1100 % confidence interval for the estimate 
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Fx̂  decreases as the sample length, N, increases, hence, the obtained estimates 
are more accurate for larger sample sizes. However, in the hydrological practice, 
practitioners often have to deal with reduced samples sizes of extreme rainfalls, 
being that these rainfalls are, generally, scarce. This aspect of extreme rainfall 
frequency analysis is even more pertinent when it is frequently needed, in design 
stages, to obtain estimates with return periods that are much larger than the size 
of the available samples. 
     In extreme rainfall frequency analysis, the most commonly used sampling 
technique, known as annual maximum series (AMS), consists of drawing the 
annual maxima of a N-year rainfall time series with a given duration (more often 
daily rainfall), resulting in samples with length N (only one value per year, 
namely the maximum of that year). Under this approach the amount of data to be 
selected is limited as it discards extreme rainfall events that despite not being the 
maxima in the years in which they occur are higher and sometimes much higher 
than the maxima rainfalls in other years. As an alternative to the AMS sampling 
technique, the peaks-over-threshold (POT) approach samples all the independent 
daily rainfall values above a given threshold; hence the resulting samples are not 
limited to one value per year, thus allowing for a more comprehensive and 
representative selection of extreme values. The peaks that constitute a POT 
sample may be modelled by a dual-domain-model that is able to describe both 
the magnitudes and the times of occurrence of the events. The POT constitutes 
an attractive alternative to AMS sampling. However, it is analytically more 
complex and there is some degree of subjectivity involved in its implementation, 
namely regarding the choice of the threshold. 
     Despite the formal advantages of the POT technique regarding the higher data 
availability that it enables, one cannot state a priori that the estimated design 
values will be more accurate simply because they are supported by more data. In 
fact, the design extreme rainfall quantiles estimated via POT approach result 
from a combination of two models (one for the magnitudes and another for the 
times of arrival) and the associated uncertainties result from both models. Plavšić 
[2] found that it is not correct to assume that a high number of peaks in a POT 
sample can ‘compensate’ for a small number of years of records.  
     This paper constitutes a brief exploration of some aspects regarding the 
construction of extreme rainfall quantile confidence intervals. Its main objective 
is to compare the confidence intervals of extreme rainfall quantiles estimated via 
the AMS approach to the ones estimated via the POT approach. For that purpose, 
two long daily rainfall series were used: Carvalho, in Portugal and Villarica, in 
Paraguay. 
The research was carried out in the scope of the European joint project CapWEM 
– Capacity development in Water Engineering and Environmental Management 
– Contract no. DCI-ALA/19.09.01/10/21526/ /254922/ALFAIII (2010) 55 –, in 
the scope of the Alfa III programme, which gathers eight partners, six being from 
Latin American countries (Argentina, Brazil, Chile, Costa Rica, El Salvador e 
Paraguay), and the remaining two from European countries (Germany and 
Portugal). The overall objectives of the project include the capacity building of 
higher education institutes, primarily in Latin America, for training in water 
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resources engineering and environmental management, which encompasses a 
component on hydrological risk analysis. 

2 Methods 

2.1 Statistical models 

In this section the formulations of the statistical models used in the study are 
presented. A prior review of works dedicated to POT frequency analysis  
(e.g. [3–5]), is recommended for readers who are not familiar with the method, 
since they thoroughly discuss important and complex aspects of POT sampling 
which will not be examined in detail in the present paper. 
     According to Pickands [6], the Generalized Pareto Distribution (GPD) is an 
appropriate statistical model to model POT data (i.e. the selected peaks over the 
threshold data, XOT), provided that some operational constraints are adhered to, 
namely the selection of a proper threshold, the independence of the sampled 
exceedances, and other complexities involved in the POT sampling technique. 
The cumulative distribution function of the GPD is given by: 
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where , , and κ are the location, scale and shape parameters, respectively. The 
location parameter does not require estimation as it is equal to the defined 
threshold. Madsen et al. [7] contains a broad discussion on parameter estimation 
for the GPD, comprehending the maximum likelihood method, the method of 
moments and the method of probability weighted moments. For 0 , the GPD 
takes the shape of the exponential distribution, ED, as a special case. Formally,  
 

   0,
x

exp1xXP)x(H OT 










  (2) 

 

     In this case, the scale parameter, , is estimated by the mean exceedance, 
regardless of which of the three aforementioned methods for parameter 
estimation is used. 
     Usually, the annual number of exceedances is assumed to be Poisson-
distributed with parameter  (alternatively the Binomial and Negative Binomial 
distributions can be used). Under this assumption, the distribution function, F(x), 
of the annual maxima, XAM, can be given by   )x(H1λexp)x(F   [4, 8]. 

As a result, if XOT follows a GPD (eqn. 1), the distribution of XAM is given by: 
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where , , and κ have the same meaning as before, which is the Generalized 
Extreme Value distribution (GEV). Eqn. (4) is equivalent to the GEV in its 
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classical parameterization,     /1)x(1exp)x(F , with the same 

shape parameter, , as the GPD, the scale parameter  , and the location 

parameter    1 . Conversely, if XOT follows an ED (eqn. 2), the 

distribution of XAM is given by: 
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     which  is  the  Gumbel  distribution  (or  Extreme  Value  type-1,  EV1).  Note that 
eqn. (5) is equivalent to the EV1 in its classical parameterization, 

   )x(expexp)x(F , with the scale parameter  , and the location 

parameter )ln( . 

     In rigour, the annual maximum distributions obtained via the POT technique 
– eqn. (4) and eqn. (5) – are defined only for x , and that for x  they are 

equal to )λ(exp  , which is the probability that no exceedance will happen in a 

year. It should be noted, however, that the former constraint has little practical 
significance as, for the usual values of  (not less than 2 or 3 [3]), )λ(exp   is 

very small compared to the relevant quantiles in extreme rainfall frequency 
analysis ( 9.0F  or higher). 
     The aforementioned results provide an adequate setup for comparing the POT 
approach to the AMS approach: if the annual maxima of a series of extreme 
rainfalls can be modelled, under a POT approach, by a Poisson-GPD model, they 
can also be modelled, under an AMS approach, by a GEV model. Obviously, an 
analogous correspondence can be made between the Poisson-ED model and the 
EV1 model. 

2.2 Construction of quantile confidence intervals 

2.2.1 Method based on asymptotic theory 
As mentioned in Item 1, asymptotic theory shows that the quantiles with a given 
non-exceedance probability, F, denoted by XF, are approximately normal-
distributed with mean equal to the estimated quantile Fx̂  and standard deviation 

sF. This result enables the construction of  α1100  % confidence intervals 

given by:  
 

 F2αF szx̂   (7) 
 

where 2z  is the standard normal variate with an 2  non-exceedance 

probability. The asymptotic variance, 2
Fs , for a given k-parameter distribution, 

),,|x(F k1   , can be calculated using the following equation: 
 

 ThΣh2
Fs  (8) 
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where Σ is the variance-covariance matrix of the estimators of the k parameters, 

k1
ˆ,,ˆ   (dependent on the method of estimation), and h is given by: 
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where q is the analytical expression of )x(F 1 . 

     Using the Maximum Likelihood (ML) method for estimating parameters, and 
taking  /)Fln( , the explicit expression for the asymptotic quantile 

variance of the Poisson-ED model is given by [7, 9]: 
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and of the Poisson-GPD model: 
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     The explicit formula for the asymptotic variance of the F quantile of the 
Poisson-GPD model given by eqn. (11) was obtained using the asymptotic 
variance-covariance matrix of the ML estimators of the GPD parameters given 
by Madsen et al. [7], which takes advantage of the assumption that the sample 
properties of the exceedance magnitudes are independent of the sample estimates 

of , hence 0}ˆ,ˆ{Cov}ˆ,ˆ{Cov  . To the knowledge of the authors, the 

explicit formula in eqn. (11) has not been given before in the technical literature. 
     Coles [10] discusses in detail how to determine the asymptotic quantile 
variances of the EV1 and GEV models, using ML estimation. For the EV1, such 
determination is not too complicated, given that it is a two-parameter 
distribution. For the GEV, the procedure is much more complicated and requires 
numerical evaluation. The R package ismev contains code that performs analyses 
of the textbook of Coles [10]. This package was used in this research. 
     It should be stressed that confidence intervals obtained by this method are 
approximate since they stem from asymptotic results.  

2.2.2 Method based on Monte Carlo simulation 
Compared to the method based on asymptotic theory described above, the Monte 
Carlo simulation technique is a less arduous, but more computationally 
expensive, method for constructing quantile confidence intervals. In broad terms, 
such technique consists of generating a large number of synthetic samples and 
obtaining from that generated data an empirical distribution of the desired 
quantiles. 
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     In the AMS approach, the Monte Carlo simulation algorithm is 
straightforward: 

1. generate a synthetic N-year sample (N being the number of years of the 

original data sample), 
AMx , by randomly sampling from a parent 

distribution of the annual maxima, F(x), with parameters estimated from 
the original sample; 

2. apply the ML parameter estimators to the generated sample 
AMx ,  and, by 

inversion of the distribution F(x) with those parameters, estimate the 
quantile with the desired non-exceedance probability F; 

3. repeat the steps 1 and 2. W times, thus obtaining a vector of W simulated 
quantiles; 

4. the lower and upper bounds of a )α1(100  % quantile confidence interval 

correspond to the W (/2)th and W (1-/2)th order statistics of the W 
quantiles obtained in step 3. 

     Under the POT approach, the simulation algorithm is more complicated 
because the annual number of exceedances is assumed to be a Poisson 
distributed random variable and, consequently, the size of the POT sample is 
variable. The following is a description of the simulation algorithm 
particularized for GPD distributed exceedances (for ED distributed exceedances, 
take 0 ). 

1. For each year j of the N-year historical sample, generate a random 
counting variate, nj (the number of over-threshold events in year j), from a 
parent Poisson distribution with parameter  estimated from the original 

sample, and estimate the ‘synthetic’ Poisson parameter,  , as  Nn
j

j ; 

2. generate a random POT sample, 
OTx , of size 

j
jnN , from a parent 

GPD distribution with parameters equal to those of the original sample; 

3. apply the ML estimators to the generated sample 
OTx  to estimate the 

GPD parameters; 

4. using the estimated parameters from step 3. and   from step 1., invert 
the annual maxima distribution, F(x), defined by eqn. (5), thereby 
estimating the quantile with the desired non-exceedance probability F. 

5. repeat steps 1. to 5. W times, thus obtaining a vector of W simulated 
quantiles; 

6. the lower and upper bounds of a )1(100  % quantile confidence 

interval correspond to the W (/2)th and W (1-/2)th order statistics of the 
W quantiles obtained in step 5. 

3 Data and model fitting 

The data set used in this study consisted of the samples of daily rainfalls in two 
rain gauges, one located in the North of Portugal (Sample no.1 – Carvalho, N=27 
years) and the other in the South of Paraguay (Sample no.2 – Villarrica, N=48 
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years). The main criteria used in data selection for this study was to have one 
sample from each of the two countries and that the probabilistic behaviour of the 
extremes of those samples should differ in the sense that one of them could be 
modelled by the Poisson-ED/EV1 model ensemble, and the other by the Poisson-
GPD/GEV model ensemble, being that the objective of the paper is to discuss the 
uncertainty inherent in these two sets of paired models. 
     As mentioned in 2.1, a proper implementation of POT technique is highly 
dependent on subjective and complex analyses related POT sampling such as the 
selection of an adequate threshold, the independence of the sampled exceedances 
and the validation of the Poisson assumption. A review of Lang et al. [3] is 
recommended for a thorough discussion on such topics. Such analyses are of 
paramount importance and have been made in this study; however they are not 
presented here since the main focus of the paper is the construction of quantile 
confidence intervals.  
     The probability plots presented in fig. 1 show that the Poisson-ED/EV1 
ensemble is adequate for modelling extreme rainfalls at the Carvalho rain gauge 
in Portugal (sample no. 1). Under the POT approach, the selected threshold was 
30 mm (sample size of 262).  
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Figure 1: Sample no. 1 – Carvalho (Portugal). (a) Daily rainfalls over a 
threshold of 30 mm; fitted ED model. (b) Annual maximum daily 
rainfall; fitted EV1 model (AMS approach); Poisson-ED model 
(POT approach). 

     Analogously to fig. 1, fig. 2 shows that the Poisson-GPD/GEV ensemble is 
adequate for modelling extreme rainfalls at the Villarrica rain gauge in Paraguay 
(sample no. 2). For this sample, under the POT approach, the selected threshold 
was 55 mm (sample size of 291). 
     It should be noted that the plotting position formula used in figs. 1 and 2 was 
Gringorten’s formula. 
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Figure 2: Sample no. 2 – Villarrica (Paraguay). (a) Daily rainfalls over a 
threshold of 55 mm; fitted ED model. (b) Annual maximum daily 
rainfall; fitted GEV model (AMS approach); Poisson-GPD model 
(POT approach). 

     Figs. 1b and 2b show that, for both case studies, the distribution of annual 
maxima obtained via either the POT or the AMS approaches are in fair 
agreement. Also, since the POT samples are larger and, therefore, more 
representative of the rainfall extremes at the rain gauges than the AMS samples, 
the estimates produced via the POT approach are theoretically more supported.      
All models were fitted using ML estimators [7]. Table 1 includes the respective 
estimated parameters. That table also summarizes the POT/AMS model 
ensemble applied to each data sample. 

Table 1:  Rainfall data. Period of records. Summary of the estimated 
parameters of the models fitted in figs. 1 and 2. 

1 - Carvalho (Portugal)  2 - Villarrica (Paraguay)

1960/61 - 1986/87 (27) 1956/57 -2003/04 (48)

EV1 GEV
Location,  84.6489 102.4477

Scale,  20.1888 21.2592
Shape,  - 0.1315

ED GPD
Poisson rate,  9.7037 6.0625

Sample size, N 262 291
Location (threshold), β 30 55

Scale, α 22.9012 26.0561
Shape,  - 0.0976

Parameters

Sample no. - Rain gauge (Country)

Period of records (N)

AMS model

POT model

Parameters
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4 Results 

For sample no 1, and no 2, respectively, figs. 3 and 4 present 95% quantile 
confidence intervals for quantiles with a quasi-continuous non-exceedance 
probability F (ranging from F=0.010 to F=0.999), resulting from the application 
of both methods introduced in Item 2 (number of synthetic series of W=5000). 
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Figure 3: Sample no. 1 – Carvalho (Portugal). Quantile confidence intervals 
resulting from the application of the asymptotic theory and Monte 
Carlo simulation methods. (a) POT approach (Poisson-ED model); 
(b) AMS approach (EV1 model).  

     The results presented in fig. 3 show that the confidence intervals obtained via 
asymptotic theory are in almost perfect accordance with the ones obtained via 
Monte Carlo simulation, under both POT and AMS approaches. This conclusion 
supports the validity of resorting to computer intensive techniques to find 
solutions to analytical problems. That figure also clearly shows that there is less 
uncertainty (more narrow intervals) associated with quantiles estimated by a 
Poisson-ED model under a POT approach (fig. 3a) than with those estimated by 
an EV1 model under an AMS approach (fig. 3b), especially for the higher non-
exceedance probabilities (F>0.9), which are the most relevant ones in 
hydrological design. It is assumed that this is due to the more broad extreme 
value data selection permitted by POT technique.  
     The results presented in fig. 4 also show a fair agreement between the 
confidence intervals obtained via asymptotic theory and with the ones obtained 
via Monte Carlo simulation, although not as good as in fig. 3. The mismatch 
between the theoretical and the simulated confidence intervals may suggest that 
the introduction of a non-zero shape parameter, , in the GPD seems to result in 
a slight positive skewness in the distribution of higher-order quantiles. This is 
visible under the POT approach (fig. 4a) but is much more evident under the 
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AMS approach (fig. 4b). A significant skewness in quantile confidence intervals 
suggests that the asymptotic theory may not give a good approximation of the 
true distribution of those quantiles and, in this case, simulation techniques are 
preferred. In fig. 4, the formal advantage that supports the application of POT 
analysis (narrower confidence intervals) is also present but is not so evident as in 
the Poisson-ED/EV1 ensemble based on sample no. 1.  
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Figure 4: Sample no. 2 – Villarrica (Paraguay). Quantile confidence intervals 
resulting from the application of the asymptotic theory and Monte 
Carlo simulation methods. (a) POT approach (Poisson-GPD 
model); (b) AMS approach (GEV model). 

5 Conclusion 

In frequency analysis of extreme rainfalls, the peaks-over-threshold (POT) 
technique constitutes an attractive alternative to the more conventional annual 
maximum series (AMS) technique since it allows for a broader selection of 
extreme events to include in the samples.  
     The research presented in this paper discussed the relative merits of the POT 
and AMS approaches regarding the analysis of uncertainty of the estimated 
quantiles via the construction of quantile confidence intervals. 
     Two POT/AMS model ensembles were applied to a data set consisting of two 
daily rainfall samples (one from Portugal and one from Paraguay) and their 
quantiles estimated. Subsequently, quantile confidence intervals were 
constructed using both analytical methods based on asymptotic theory and 
computational methods based on Monte Carlo simulation algorithms. Such 
confidence intervals summarize the uncertainties associated with the estimated 
parameters due to sampling variability. 
     It was found that it is possible to reduce the uncertainty (obtain narrower 
confidence intervals) of extreme rainfall quantiles if they are estimated using a 
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POT approach, as an alternative to the more commonly used AMS approach. 
This is due to the larger data availability made possible by POT sampling. 
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