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Abstract 

This contribution deals with the integration of spatial data to predict landslide 
hazard.  A database is used containing the spatial distribution of  landslides that 
have occurred in a study area in the northern part of the “Comunità Montana 
Valtellina di Tirano”, in the Lombardy Region of northern Italy.  The mountain 
area is affected by a large number of rotational-translational landslides.  The 
database consists of digital maps of both continuous and categorical data that are 
considered as influential in determining the conditions of sliding and is to allow 
the identification of spatial relationships between the distribution of observed-
mapped landslide trigger zones and that of the integrated map units of the more-
or-less “influential” digital maps.  Functions of those relationships are used for 
the characterization and recognition of either known trigger zones or future ones, 
over the entire study area. 
     Given a mathematical model to establish the spatial relationships using a 
database, their integration within a study area to generate a landslide hazard map, 
must be tested for relative significance and quality for the purpose of hazard 
prediction.  For this the dedicated software system Spatial Target Mapping, 
STM, is used that provides iterative blind testing procedures for a number of 
spatial prediction models.  The analyses, based on empirical likelihood ratios and 
many blind tests, have clearly identified the capabilities of the database in its 
present condition for prediction modelling of landslide hazard. 
Keywords: landslide hazard, spatial relationships, data integration, likelihood 
ratios, spatial prediction, blind tests, database evaluation. 
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1 Introduction and motivation 

Numerical approaches to assess or predict natural hazards stem from the efforts 
to establish spatial relationships between the occurrence of hazardous events and 
their spatial context.  This became possible with the availability of systematic 
descriptions and interpretations of hazardous events, such as specific dynamic 
types of landslides, including their distribution in space and in time over a study 
area.  Their geomorphologic settings could be identified by considering the 
distribution over the study area of units in thematic maps related with the hazard 
generating processes: characteristics of the topographic surface, elevation, slope, 
aspects, etc., and of land-use, vegetation, soil depth, surficial and bedrock 
geology.  The numerical approaches were applied to spatial databases containing 
those distributions of hazardous occurrences and of characteristic map units.  
Within the databases aspects such as location and extension of trigger zones 
(scarps) and the entire landslide bodies (scars), dynamic type and time of 
occurrence needed to be recorded with a convenient level of spatial resolution, 
hopefully compatible with that of the thematic units.  The units represented 
either continuous fields (e.g., slope) or categories (e.g., classes of land use).   
     In most studies and applications to date, much emphasis has been assigned to 
the construction of the mathematical models and to assessing their superiority 
over alternative models in terms of their success in classifying the level of hazard 
over the study areas [1].  Less attention was given to interpreting the resulting 
hazard maps.  Such studies were criticized by the authors of this contribution 
because of the absence of validation measure of the hazard maps generated by 
modelling [2].  Various types of cross-validation were proposed, in which blind-
tests were strategically applied to assess the relative quality, robustness, 
uncertainty or comparability of the hazard maps.  Those tests were based on 
modifications of the inputs to the models, for instance ignoring part of the 
occurrences or of the study area, or changing assumptions on the data.   
     In this contribution blind-tests are used as a strategy to bring out database 
suitability for prediction modelling of landslide hazard.  A database is used 
containing the distribution of landslide events that have occurred in a study area 
in northern Italy, which is affected by a large number of trigger zones of 
rotational-translational landslides. This paper deals with the database, its 
suitability for the modelling of the spatial relationships, the processing strategies 
used, and the analyses performed using the Spatial Target Mapping system, 
STM, especially developed for prediction modelling with iterative spatial cross-
validation procedures.   

2 Database construction and use 

The study area, whose location is shown in Figure 1, covers the northern half of 
the “Comunità Montana Valtellina di Tirano”, in the Province of Sondrio, 
Lombardy Region of northern Italy.   
     The “Comunità” has been established in 1971 for the protection of mountain 
communities. It consists of 12 municipalities covering altogether 450 km2.  An 
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Figure 1: Location of the Tirano North study area, Lombardy Region, above, 
and distribution of active and quiescent rotational-translational 
landslides, below.  The line separates the study area in W and E 
regions. 

overview of its geomorphology was provided by Mauriello [3] and is 
summarized here.  Over 67% of the territory has elevations higher than 1500 m 
a. s. l. The valley bottoms, traced by the Adda River, have a number of 
connected planar areas flanked by alluvial fans.  The area has a young Alpine 
geomorphology due to the morphogenic action of waters and glaciers.  Erosion, 
due to torrent action is predominant: the intense activity of the waters generates 
erosion of both sides of stream beds, triggers landslides and mass movements in 
areas affected by deep gravitational deformations or paleo-landslides.  In 
addition, the exploitation of the waters for electrical energy production has 
generated slope instabilities due to the induced variations of aquifer conditions.   

42 active landslides, 783 123 quiescent landslides, 3411 

Risk Analysis VIII  265

 
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 44, © 201 WIT Press2



     The area is characterized by Alpine tectonism with different structural 
domains and intensities of deformation.  It is crossed by a linear tectonic 
structure representing an over-thrust surface and is marked by mylonites 
representing an advanced state of deformation.  The land use is mostly related to 
climatic conditions and varied geomorphology with elevations ranging between 
300 m and 4000 m a. s. l. that affect temperature, pressure, rainfall, humidity and 
insolation.  Rainfall has yearly averages between 1300 and 1900 mm, in areas of 
greater precipitations, and between 700 and 900 mm, in areas of minor 
precipitations.  The rainfall variations occur mostly in spring and in summer.  
The vegetation distribution is strongly influenced by elevation differences: up to 
600-700 m a. s. l. are broad-leafed woods, at higher elevations up to 1400 m and 
sporadically to 2300 m are coniferous woods.  At the valley bottoms and on less 
steep surfaces, anthropization has greatly affected the vegetation with clear 
cutting of woods for agriculture purposes, or the construction of terraces for 
vineyards and orchards.  Urbanization that used to be located mostly on natural 
terraces, well protected from floods and slope failures, has expanded with the 
occupation of the valley bottoms and of the alluvial fans where now most of the 
villages are now distributed. 
     The most frequent dynamic types of mass movements in the study area are 
rotational and translational slides that affect debris slope deposits, 
accumulations of paleo-slides or fluvio-glacial deposits.  Triggering cause is the 
convergence of several factors such as intense rainfall and stream erosion at the 
valley bottoms.  Rotational slides or slumps occur in terrains and poorly-
coherent or semi-coherent rocks, poorly cemented, altered or brecciated by 
tectonism.  Flows, rock avalanches, debris flows and debris torrents are 
impossible to separate in the study area.  Complex slides due to convergence of 
several dynamic types are predominant.  The transport phase of the material is 
relatively reduced and the erosion area or detachment niche can be separated 
from the accumulation area not too far down the slope.  The depletion zone can 
be distinguished from the accumulation zone.  The mobilized material is divided 
into main body and toe of the landslide.   
     The Tirano North study area database [3] covers a rectangular area with 1034 
pixels x 1290 lines,  with pixels of 20m resolution.  Within the rectangle, the 
study area occupies 742,624 pixels, i.e., 297 km2.  Beside a field trip volume 
dedicated to Alpine Landslides in the area [4], three national-regional initiatives 
provided fully or in part the data for the construction of the spatial database: 
projects IFFI [5], on landslide inventory, CARG [6] on geological cartography, 
and DUSAF [7], on soil-land use cartography.  Such a wealth of controlled 
information allowed the construction of a database with a relatively high quality 
of information.   
     In the database a distinction could be made of the activity status of the 
landslide phenomena into active and quiescent.  Active were considered the 
landslides directly observed as in-motion or with a seasonal recurrence cycle 
characteristic of their evolutionary process.  Quiescent were considered those 
non active at the time of surveying and lacking  a seasonal periodicity.  For 
these, ample data were available demonstrating past activity within the 
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geomorphologic, morpho-climatic and morpho-dynamic system in the region.  
Conclusion is that they retain a possibility of reactivation, not having exhausted 
their evolution potential.   
     There are 42 active landslides trigger zones in the area that occupy 783 pixels 
(average size 18.64), and 123 quiescent landslide trigger zones that occupy 3411 
pixels (average size 27.73).  Figure 1 shows the location of the Tirano North 
study area and the distributions of the 42 active and 123 quiescent rotational-
translational landslides.  The total trigger zones of 4194 pixels, represents 0.56% 
of study area.  It was not possible to separate rotational from translational 
landslides either in the field or from the inventories consulted.  For this reason 
the study dealt with rotational-translational landslides.  Table 1 provides some 
numerical information on the spatial database of the Tirano North study area.  
For it was available 1:10,000 digital cartographic information.  The digital 
terrain model had a 5 m resolution that was used to obtain the 20m resolution 
derived digital maps of the database.   

Table 1:  Data layers, support, value ranges and data type of the Tirano North 
study area database [3].  Supporting patterns are defined in section 3. 

Data layer Supporting 
pattern 

Value 
range 

Data type Data source 

Quiescent 
landslides 

 

Direct 
1 - 123 

 
Sequentially 

indexed 
 

 

IFFI [5] 
Active 

landslides 1 - 42 

land use  
 
 
 

Indirect 

1 - 20  
Categorical 

DUSAF [7] 
lithology 1 - 44 

CARG [6] 
permeability 1 - 8 

elevation 389 - 3313  
 

Continuous 

Aerial photo-
grammetric 

survey of year 
2001: 1:2,000-

1:10,000 

slope 0 - 77 
aspect 0 - 359 

Internal 
relief 1 - 157 

curvature -41 - +39 

3 Modelling spatial relationships using STM 

The database described in the previous section was processed and analyzed using 
the Spatial Target Mapping system, STM, [8] a software tool for the application 
of a variety of prediction models, whose resulting prediction maps are 
conveniently subjected to cross-validation procedures for interpretation [9, 10].  
STM is a development of an earlier system, the Spatial Prediction Modelling 
system, SPM [11].  The models are based on functions such as Fuzzy Sets, 
Empirical Likelihood Ratios, Linear and Logistic Regression, and Bayesian 
Probability.  The functions can be used as alternative interpretation and ways to 
transform each data layer into a supporting pattern of the presence and absence 
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of the occurrence of hazardous events.  A proposition is implied in the form of a 
mathematical statement to be proven as true or false: i.e., “that a pixel in the 
study area is affected by the trigger zone of a rotational-translational landslide.”  
The combined presence of the mapping units of the data layers is used to express 
the support of the proposition.   
     The function is estimated from the database of the study area and is calculated 
for every pixel in it as a relative hazard value.  The set of the pixels and their 
values so calculated represents the hazard prediction will.  The simultaneous 
analysis of continuous and categorical data layers includes their aggregation into 
a favourability index function of landslide hazard.   
     The data layer with the distribution of the trigger zones of the landslides is 
considered as a direct supporting pattern, DSP, while those of the other data 
layers are termed as indirect supporting patterns, ISP.  In this work we have 
used the Empirical Likelihood Ratio function, ELR, as a model to generate and 
cross-validate landslide hazard prediction maps.  We will term them prediction 
patterns from now on.  A full discussion of this model has been provided in by 
Chung [12]. 
     For a given study area, the degree of completeness of a spatial database is a 
consequence of time, means and urgency of the hazard study.  However, the 
quality of the resulting hazard prediction pattern, expressing the likelihood of 
future occurrences, depends on several factors of both conceptual and empirical 
nature.  Assumptions are necessary on the uniformity of rate of occurrence 
through time and space, on that of the triggering factors, on the capability of the 
database to provide reliable spatial relationships, and on the mathematical 
models used to extract, classify and extrapolate the typical geomorphologic 
setting of the hazard.  Such setting is obtained by aggregating the spatial 
relationships established by the models for each thematic map. 
     In the application of the ELR to the database, the following assumptions are 
necessary or implicit: 

(1) The database is sufficient in area extent, resolution and content to 
express the spatial-temporal characteristics of the hazardous process; 

(2) The ISPs represent factors of, or indicators related to, the presence of 
the hazardous events; therefore they sufficiently express the spatiality of 
the process generating the distribution of the hazardous events; 

(3) The DSP can be partitioned to represent older and younger sets of 
occurrences, so that the older set is used to compute the spatial 
relationships to generate classes of hazard, and the younger set is used 
to verify the distribution of younger occurrences among the higher 
classes of hazard; 

(4) The conditions in space and in time of the older set are similar and 
comparable to those of the younger set; 

     In this study DSPs are obtained from the map with the distribution of all the 
165 rotational-translational landslides, and from various partitions of that 
distribution, e.g., that of the 123 quiescent landslides, that of the 42 active 
landslides and further sub-partitions of those.  In addition, the ISPs are obtained 
from transforming the five continuous data layers (elevation, aspect, slope, 
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internal relief, and curvature) and the three categorical data layers (lithology, 
land use and permeability).  The transformation is based on computing the 
density function for the continuous data layers in correspondence with the DSP 
(or the normalized frequency for the categorical data layers), and the density 
function in correspondence with the areas outside the DSP.  Then the ratio of the 
two is calculated for each value or unit of a data layer. 
     The ELR function model was applied initially to the database using the 
distribution of all the 165 landslides and subsequently using separately those of 
the active and quiescent landslides.  In the analyses performed all eight ISPs 
were used and integrated to generate relative ranks of the ELR values.  Figure 2 
shows two predicted hazard prediction patterns in which groups of classes in 
descending order are assigned a sequence of pseudo-colours as indicated by the 
legend.  From an initial default number of 200 equal area classes, each of 0.5% 
of the study area, classes were aggregated for facilitating the visualization of the 
pattern.  In the illustration, in white are the landslides used for generating the 
hazard prediction patterns and in black the remaining landslides that we would 
like to see as well classified, i.e., assigned to a high value hazard class.  In either 
 

 

Figure 2: Prediction patterns, left, using 42 active landslides in white and, 
right, using 123 quiescent landslides in white. In black is the 
distribution (size slightly exaggerated for better visualization) of 
the remaining 123 quiescent landslides, left, and of the 42 active 
landslides, right.  Legend indicates the hazard classes as % of study 
area; grey is the outside of the study area.  
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pattern we can see that a high proportion of the black landslides are located on 
low-value classes.  Figure 3 shows the fitting-rate curves and the prediction-rate 
curves for the two prediction patterns in Figure 2.  The cumulative curves are 
obtained as follows. The study area ranked equal-area classes are on the 
horizontal axis in descending order, and on the vertical axis are the 
corresponding cumulative proportions of landslides.  The fitting-rate curves 
express the distribution of the landslides used for generating the prediction 
pattern and do not indicate the prediction quality but only the classification fit.  
The prediction-rate curves instead, indicate how well the cross-validation 
landslides (i.e., not used to predict) are distributed among the prediction classes.  
They are the key for representing the relative quality or “goodness” of the hazard 
prediction classes.  For instance, comparing the two prediction-rate curves at 
10% and 20% of the highest hazard classes in the study area, we have a 
corresponding 10% and 30% of quiescent landslides in the prediction using the 
42 active landslides, and 18% and 28% of active landslides in the prediction 
using the 123 quiescent landslides.  The two prediction-rate curves show a very 
poor prediction power!  Let us see what the cause is. 
 

 

Figure 3: Fitting-rate curves (broken lines) and prediction-rate curves (solid 
lines) for the two prediction patterns in Figure 2, obtained using the 
distribution of the 42 active landslides and the 123 quiescent 
landslides, respectively. 

     The poor predictions in Figure 2 reflect the situation in which the two groups 
of active and quiescent landslides have different distributions and settings.  
Initially it was hoped that the quiescent landslides were just older than the active 
ones or that a prediction using the active ones would indicate the quiescent 
landslides that are likely to reactivate.  In this case we have a different 
interpretation. 
     The different settings can be confirmed and interpreted by analyzing the 
support of the individual ISPs, observing their density functions and ELR 
functions.  For instance, in Figure 4 we observe the density function of elevation 
for the entire set of 165 landslides and their outside, and the corresponding ELR 
function.  Values of ELR above 2 indicate acceptably significant ratios. The  
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 Function  

Figure 4: Density function and Empirical Likelihood Ratio function of the 
elevation data layer for the entire set of 165 landslide trigger zones 
(4194 pixels), without distinction of activity status, contrasted with 
the remaining area (738,430 pixels), in the Tirano North study area. 

bimodality shown in both the density function in correspondence with the 165 
landslides and in the ELR function already indicates the existence of two 
maxima at about 1400 m and 1900 m elevations.   
     Figure 5 shows the ELR functions of elevation and slope separately for the 
two landslide activity sets.  Elevations of about 1400 m are common for the 
distribution of quiescent landslides, and around 2000 m for active landslides.   
     Slope angles between 40 and 50 degrees have significant ELR values for 
active landslides but it is not so for quiescent landslides.  Also internal relief 
values greater than 70 and aspect values between 42 and 112 generate ratios well 
above 2.  On the contrary, the curvature ratios, land use and permeability do not 
show much significance of support. 
     Figure 6 shows the normalized frequency function, and the ELR functions of 
lithologies for the 42 active landslides.  Of the 44 lithologies, glacial drift, non 
colonized or poorly colonized rock debris accumulations (units 15, 16), eluvial-
colluvial deposits, exposed intrusive rocks (units 37, 38, 39), and generally 
incoherent debris (unit 21) have significant frequencies and high ELR values as 
well for active landslides. Quiescent landslides, their diagram is not shown here,  
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Figure 5: Empirical Likelihood Ratio functions for the elevation data layer 
and the slope data layer for the separate groups of 42 active 
landslide and 123 quiescent landslides trigger zones. 

 

 

Figure 6: Normalized frequencies and Empirical Likelihood Ratios for the 
lithology data layer for the 44 active landslide trigger zones. 
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have high ELR values for units of accumulations from ancient rock falls and 
landslides (units 1, 2), poorly colonized alluvium fans and debris accumulations 
(units 8, 14), active and inactive partly colonized debris accumulations (22, 23), 
paleo-slides (33) and exposed effusive rocks (unit 35).  Permeability classes of 
incoherent terrains and land use classes of areas covered by recent deforestation 
and with mixed and broad leaved coniferous plants show marginally significant 
ELR values for active landslides.  Reforested and re-vegetated units have 
moderately significant ELR values for quiescent landslides.   
     The initial analysis of prediction modelling using the ELR shows clearly what 
units or values of ISPs contribute to the hazard prediction pattern generation.  
Our question to be answered, however, concerns how good the prediction 
patterns generated are as predictors of future landslides.  For discovering that, we 
need to apply a number of cross-validations via blind-tests. 

4 Processing strategies based on blind-tests 

4.1 Motivation 

Knowledge of the time or period of occurrence of the landslides is implied in 
assumption (3) in the previous section.  The time can be obtained, for instance, 
by photo-interpreting aerial photographs covering a study area in different years.  
In that case the occurrences of an older period are used to generate a hazard 
prediction pattern, whose quality can be cross-validated by considering the 
distribution of later occurrences across the higher classes of the hazard prediction 
pattern.  In most situations to date, however, the time or period of the occurrence 
of the landslides is unavailable.  Then, in order to cross-validate the prediction 
pattern generated by using all the available occurrences (the most representative 
but whose predictive quality is still unknown, as is for the prediction patterns in 
Figure 2) we can simulate a time partition in various ways.  For instance, when 
we have a few dozens of occurrences, we can pretend not to know the existence 
of one at a time, and use the remaining ones to generate a hazard prediction 
pattern.  Subsequently, the cross-validation would consist of calculating which 
hazard class contains the excluded one.  If we have, for instance, n occurrences, 
the process can be repeated n times with n-1 occurrences to obtain n 
classifications of occurrences.   
     Alternatively, we could select at random a part of the n occurrences, say 75%, 
use their distribution to obtain a hazard prediction pattern and see where the 
remaining 25% is classified in the hazard classes.  Again, the process can be 
repeated as many times as needed to robustly cross-validate the initial hazard 
prediction pattern, whose relative prediction ability or “goodness” would have to 
be at least the same as, if not better than, that, of the cross-validated pattern. 
     Such ability can be visualized in the form of a prediction-rate table or 
histogram or cumulative plot.  In addition, the statistics from such an iterative 
cross-validation process can produce what we can term as a Target Pattern, as an 
average or a median of all predicted values for each pixel, and an associated 
Uncertainty Pattern, expressing the variance of values or alternatively their 
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range at each pixel around the average values of the Target Pattern.  Finally, 
some threshold of the classes in the Target Pattern will show all the pixels where 
the variance is below it, as a Combination pattern of target and uncertainty of 
class membership for the Target Pattern.   

4.2 Application of sequential elimination of one and random selection 
strategies 

Other types of strategies can also be applied, depending on the database 
characteristics and on the scope of the analysis.  Here, the main focus is on 
database characterization and interpretation for generating hazard prediction 
patterns.  In particular, our hazard priority in the Tirano North study area is the 
setting of the 42 active landslides, assumed to be more hazardous than the 
quiescent.  Because their relationships with the other 123 quiescent landslides is 
rather weak, our analytical strategy has preferentially dealt with the setting of the 
former first and of the latter only later on as a term of comparison. 
     Figure 7 shows the Target Pattern obtained by calculating the median of the 
results of 42 ELR model prediction patterns obtained using each time the 
distribution of 42-1 active landslides to predict the remaining one.  The 
corresponding prediction-rate curves are shown in Figure 8A.  Ranking statistics 
has been used to obtain the median rank for the Target Pattern and the range of 
ranks as the Uncertainty Pattern. The 25% and 50% of the study area’s Target 
Pattern have generated the Combination Patterns.  Consider 42 prediction 
patterns.  At every pixel, we have 42 prediction values.  From these 42 values, 
we have computed the median and the range at each pixel.  The Target Pattern 
in Figure 7 represents the median values and the Uncertainty Pattern represents 
the ranges.  The higher is the value in the Target Pattern, the higher is the 
hazard.  On the other hand, the higher is the value in the Uncertainty Pattern, the 
higher is the uncertainty.  By selecting the areas whose pixels correspond to 
values that are included in the lowest 25% or 50% of the values in the 
Uncertainty Pattern, we are selecting the most stable (or robust) parts of the 
Prediction Pattern obtained from the 42 prediction patterns.  To combine these 
two patterns into a Combination Pattern, we have shown the Target Pattern only 
in the selected 25% and 50% areas and we have coloured the remaining 75% or 
50%areas as grey suggesting that there we have difficulty in predicting the level 
of hazard.   
     The prediction-rate curve sets in Figures 8A, 8B, and 8C, have been obtained 
by the ELR model in the following three analyses: (42at-1x42), 42 iterations of a 
sequential-elimination-of-one analysis of the active landslides, (42at-r31x16), 16 
iterations of random selection of 31 of 42 of the active landslides to predict the 
remaining 11, and (123qu-r92x16), 16 iterations of random selection of 92 of 
the quiescent landslides to predict the remaining 31.  In Figure 8A each thin line 
indicates the hazard class membership of one active landslide trigger zone.  The 
solid line is the median prediction-rate curve as in the diagrams of Figures 8B 
and 8C, where the thin lines are the individual iteration prediction-rate curves.   
     We can see that the range of values around the median curve in the diagrams 
increases with the increase of cumulative proportion of study area classified as  
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Figure 7: Target, Uncertainty, 25% and 50% Combination Patterns for 
analysis 42at-1x42, using rank statistics, median rank and range of 
ranks. 
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Figure 8: Sets of prediction-rate curves for the three analyses 42at-1x42 in 
(A), 42at-r31x16 in (B), and 123qu-r92x16 in (C).  Solid curves 
are medians. 
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hazardous, to decrease towards the highest values on the horizontal axis.  The 
median prediction-rate curve is initially very steep and then it tends to become 
less inclined until it gets sub-parallel to a diagonal line.  A diagonal line indicates 
a random distribution of landslides in the hazard classes, i.e., a distribution 
directly proportional to the hazardous area increase.  Intuitively, we can select 
the steeper part of the curve as indicative of the portion of study area to consider 
as hazardous within an acceptably narrow range of variance or uncertainty.  Let 
us consider two points on the curves, at a 10% and a 20% of study area with the 
highest predicted value classes.  What is the prediction telling us (or is able to 
tell us) that is acceptable from a benefit-cost point of view?  The diagram in 
Figure 8A shows that 55% and 68% of the validation landslides fall within those 
respective classes.  In the diagram of Figure 8B we have the 52% and 66%, just a 
little less than in the previous diagram, and in that of Figure 8C, we have 32% 
and 57%.  In addition, the ranges of the predicted values are wider in Figures 8A 
and 8B, which show greater relative uncertainty than in Figure 8C. 

4.3 Additional strategies: sequential selection of one and two regions 

To analyze this aspect, another experiment was performed to verify the 
uniformity of the 42 active landslides and their setting.  Each single active 
landslide trigger zone was used to generate a hazard prediction pattern to predict 
the remaining 41.  It was repeated 42 times to obtain a 42x42 matrix of values, 
41 for each landslide as a predictor and 41 as predicted by the remaining 41.  A 
threshold on the classification was set arbitrarily at the highest 20% prediction 
classes.  That enabled to isolate the 20 landslides considered simultaneously as 
well predicted and well predicting from the remaining 22.  That clear cut 
separation indicated that also within the 42 active landslides there are at least two 
different settings.  This should be of guidance in further improving their 
description in the landslide databases.  A logical question to ask at this point is: 
can we improve further the prediction quality? Can we get better-looking steeper 
prediction-rate curves?  The following analysis was to partly answer that 
question. 
     Another experiment was done assuming then to have at least two different 
settings of the 42 active landslides distributed randomly in the study area.  We 
have tested the subdivision of the study area into two more or less geo-
morphologically comparable E and W regions.  The boundary of the two regions 
is indicated in Figure 1.  The entire database was split into two sets of DSPs and 
ISPs. The 25 active landslide trigger zones in the E region were used to generate 
a prediction for the 17 active landslides in the W region and vice-versa.  This 
was done by computing the spatial relationships within one region and exporting 
the respective statistics into the other. The results have generated more 
optimistic, better looking, prediction rates for the E to W prediction, with the 
highest 10% of the area classified as hazardous containing 72% of the validation 
landslides, and 20% containing 85%.  For the W to E predictions the 
corresponding figures are for the 10% containing 46% and 20% containing 51%.  
While such E-W differences are due to the different distribution of units of ISPs 
in the two regions, the experiments indicate that a random mixture of landslide 
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types predicts relatively better another random mixture.  It remains to be seen 
whether such better-looking prediction-rate curves are more useful for hazard 
mapping!  The need for better characterization of the dynamic types of landslides 
and their setting remains a primary issue in prediction modelling. 

5 Concluding remarks 

In this contribution we have analyzed the spatial database constructed for the 
Tirano North study area.  The purpose of the analyses was the assessment of its 
suitability for prediction modelling of rotational-translational landslide hazard.  
The 165 such landslide trigger zones mapped and described were partitioned into 
42 active and 123 quiescent landslides.  Their respective empirical likelihood 
ratios indicated different settings for the two classes of activity.  The prediction 
pattern generated using the 123 quiescent landslides poorly predicts the 42 active 
landslides.  Equally poor was the prediction pattern generated by the 42 active 
landslides for predicting the 123 quiescent landslides.  Their different settings 
could be clearly interpreted in the analyses of the database from the empirical 
likelihood ratio functions of the eight data layers used as ISPs. 
     To assess the prediction capabilities of the two prediction patterns based on 
the 42 active or the 123 quiescent landslide trigger zones, several strategies were 
used for cross-validating via  blind testing: (1) sequential elimination of one 
procedure for active landslides, named 42at-1x42, (2) random selection for 
active landslides, named 42at-r31x16, and (3) random selection for quiescent 
landslides, named 123qu-r92x16.  The iterative procedures generated sets of 42, 
16 and 16 prediction patterns, respectively.  Those sets were used to compute 
rank statistics generating the Target Pattern (median rank), the Uncertainty 
Pattern (range of ranks) and the Combination Pattern of Target and Uncertainty 
for given thresholds of uncertainty, i.e., 25%.  Those patterns and the 
accompanying sets of prediction-rate curves indicate or measure the actual 
suitability of the database for spatial prediction modelling.  
     The relatively moderate prediction quality in the study area can perhaps be 
improved with a better characterization of the landslides identifying further their 
specific dynamic type and spatial setting.  For instance, an analysis of the 42 
active landslides was performed in which the spatial relationships of each 
individual landslide trigger zone were used to generate a prediction pattern and 
to cross-validate it with the distribution of the remaining 41.  Forty two 
prediction patterns were generated iteratively and each provided a prediction rate 
curve for the remaining 41 landslides.  This experiment allowed the separation of 
20 well predicting and well predicted landslides from the remaining 22, poorly 
predicted and predicting (threshold at the highest 20% predicted classes).  
Finally, the E-W predictions generated better looking prediction-rate curves.  
Unfortunately, however, we had to use a mixture of different active landslides to 
predict another mixture. These aspects point at the insufficiency of the available 
description of the latter group of landslides.  Only knowing more on the 
landslide settings and type we would obtain better results as more acceptable or 
interpretable hazard prediction patterns.  It is not the model the main priority in 
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spatial prediction modelling, in this case, but the database quality for this 
purpose! 
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