
Creative Application to Remedy Epidemics 

R. Kasprzyk, A. Najgebauer & D. Pierzchała 
Military University of Technology, Cybernetics Faculty, Poland 

Abstract 

This paper focuses its attention on a project named CARE – Creative 
Application to Remedy Epidemics. CARE is a subsystem of monitoring, early 
warning and forecasting system SARNA, which was built at the Military 
University of Technology and was put into practice in the Government Safety 
Centre. CARE is a creative software solution that takes advantage of pioneering 
sociological theories, graph and network theory and the state-of-the-art in 
software technologies. Its very purpose, of particularly high importance 
nowadays, is to counter infectious diseases, such as a flu.  
     The paper deals with research of Complex Networks displaying the so called, 
Scale Free and Small World features, which make them accurate models of many 
networks – Social Networks in particular. These features on one hand appear to 
boost efficiency in communication networks and on the other speed up the 
spreading of many diseases.  
Keywords: social networks, complex networks, epidemic modeling and 
simulation, vaccination strategies. 

1 Introduction 

Among many disasters on a worldwide scale there is one that concerns almost 
every country of the world. This is the influenza virus (flu) and the new strain, 
which is called swine influenza (A H1N1). Last season’s flu has infected so 
many people that the problem of lack of hospital beds appeared. Due to the high 
risk of infection, according to legal acts, the Government Safety Centre (Polish 
acronym RCB) had to carry out tasks of daily monitoring of influenza and 
influenza-like illness in the country. Due to this reason and at the request of the 
RCB, at the Military University of Technology, a dedicated early warning and  
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decision support system named SARNA was built and put into practice. The 
SARNA is a multi-level system for reporting patient data and resources of 
hospitals for cases of influenza and influenza-like illness.  
     The most innovative module (at present in a testing phase) of the system is 
CARE. It utilizes state-of-the-art software technology and includes advanced 
forecasting models and pioneering social network theories. It has a very practical 
purpose of growing importance and demand: to counter infectious diseases, 
particularly any kind of flu. The system allows one to model almost any kind of 
disease based on epidemiological knowledge and to generate social networks 
using Complex Network theory. The very significant functional goals are: 
building special polls running on mobile devices to discover network topology, 
identifying “super-spreaders” and come up with a vaccination or isolation 
strategy, simulating and visualizing how the epidemic will spread in a given 
population and assessing the excepted outcomes of different epidemic scenarios. 
Interactive techniques for information visualization demystify data and reveal 
otherwise hidden patterns by leveraging human visual capabilities to make sense 
of abstract information. 
     CARE has enormous practical potential in regions where there are not enough 
medicines or time to treat those at risk. It could be widely applied not only for a 
flu virus but also for many others and can help to destroy those viruses. The 
proposed technology creates new possibilities for crisis management centers, 
epidemiology centers and governments to estimate and to management epidemic 
risks.  

2 Definition and notation 

Complex Networks are commonly modeled with either simple or directed graphs 
where the set of nodes (vertices) represents objects under investigation, and joins 
(arcs, edges) between two such nodes exist if the corresponding objects are 
related due to some interesting relationship. Formally, a graph is a vector 
G=<V,E,P> where: V is a set of vertices, E is a set of edges, and P is an 
incidence relationship, i.e. PV × E × V. The degree ki of a vertex vi is the 
number of edges originating from or ending in vertex vi. The shortest path dij 
from vi to vj is the shortest sequence of alternating vertices and edges, starting in 
vertex vi and ending in vertex vj. The length of a path is defined as the number of 
links in it. Networks very often are represented in practice by a matrix called the 
adjacency matrix A, which in the simplest case is an n x n symmetric matrix, 
where n is the number of vertices in the network, n = |V|. Element of adjacency 
matrix Aij=1, if there is an edge between vertices i and j, and 0 otherwise. 
     In some cases the use of graph does not provide a complete description of the 
real-world systems under investigation. For instance, if network are represented 
as a simple graph, we only know whether systems are connected (data are 
exchanged between them), but we cannot model kind/strength of that connection. 
For now, however, we will use only formal graph definition. 
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3 Epidemic modeling in social networks 

The network of possible contacts between individuals describes which 
individuals can infect which. We explore epidemic spreading in Social Networks 
modeled by Complex Networks. One of the most known mathematical models of 
Social Networks generators was a random graph [1]. Assuming equally probable 
and independent random connections between any two vertices in initially not 
connected graph, they derived a model with a highly unrealistic social network 
topology. Apparently, Complex Networks have Scale Free [3] and Small World 
[2] features, what make them accurate models of Social Networks. What are 
those features? A Small World network is a type of graph in which most nodes 
are not neighbors of one another, but most of them can be reached from any 
other with a small number of steps. The Scale Free feature pertains to a network 
in which most of people have relatively small amount of contacts, but there are 
some individuals that have huge amount of contacts. These individuals are called 
“super-spreaders”, because they can spread diseases very fast. If such individual 
gets infected and in turn infects a portion (or perhaps all) of his numerous 
neighbors, that causes a sudden increase in the count of sick people. The 
application uses a few centrality measures [11] that help in finding the critical 
elements (e.g. degree centrality, radius centrality, closeness centrality or 
betweenness centrality) and finally suggests who should be immunized [14]. 
     It is important to notice that we can determine the dynamic of epidemics if we 
know the network of possible contacts between people. Thus, the knowledge of 
such network topology makes it possible to simulate spreading of contagious 
diseases and to counteract them effectively. The system is a novel attempt in 
countering spreading of diseases, the first one to incorporate the knowledge 
stated above. Today there is no similar solution, and in most cases 
epidemiologists still choose people to vaccinate at random or decide to vaccinate 
the whole population if they have enough vaccines. We argue that these current 
methods are improper. Unfortunately, the most frequent situation is that we do 
not have enough vaccines to treat the whole population. And random 
immunization is almost useless, because it gives a very small chance of 
separating a social network into independent components – it is characteristic for 
Scale Free networks that they remain connected even after up to 80% of their 
nodes are removed (in our case: immunized or isolated) [10]. This suggests a 
simple solution: to immunize the “super-spreaders” first, which will slow or stop 
the spread. Unfortunately, this solution is very often impossible because in most 
cases the knowledge of network topology is uncertain and incomplete. 
     Our system proposes a number of solutions of gathering and using the 
knowledge of social networks features. First of all, it enables to create specific 
questionnaires (polls) which help in discover networks topologies. For example 
they may include a question that requires naming at least one acquaintance/ 
friend/ partner/ colleague etc. Individuals who are frequently named could 
potentially be “super-spreaders” [13]. It also gives a tool to generate synthetic 
social networks with the same statistical properties as real networks [12]. 

 
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

Risk Analysis VII  PI-547



4 Social Network generators 

In 1960, Erdös and Rényi [1] described their investigations of random graphs. 
Assuming equally probable and independent random connections made between 
any pair of vertices, they derived a model that suffered unrealistic topology. 
Because of that their model was not very useful for modeling real life social 
networks; nevertheless they proved a number of interesting results about random 
graphs. There are a few models of random graphs, some of them we have 
implemented. 
     Identifying and measuring properties of Social Networks is the first step 
towards understanding their topology, structure and dynamics. The next step is to 
develop a mathematical model, which typically takes a form of an algorithm for 
generating networks with the same statistical properties. Apparently, networks 
derived from real data (most often spontaneously growing) have “six degrees of 
separation”, power law degree distributions, hubs occurring, tendency to form 
clusters and many other interesting features. Two very interesting models capture 
these feature, have been introduced recently.  
     First, Watts and Strogatz in 1998 [2] deal with mentioned features by a 
strategy that seems perfectly obvious once someone else has thought of it. They 
interpolate between two known models. They begin with a regular lattice, such 
as a ring, and then introduce randomness by ‘rewiring’ some of the edges. If all 
edges are rewired a random graph appears. The process of rewiring affects not 
only the average path’s length but also the clustering coefficient. Both of them 
decrease as probability of rewiring increases. The striking features of this 
procedure is that for relatively wide range of rewiring probabilities the average 
path length is already low while clustering coefficient remains high. It is called 
Small World model, or more precisely: Beta-model of Small World network. 
Next to Beta-model there exists also Alfa-model of Small World network. That 
model tries to capture the actual way the social connections are formed. What is 
surprising is not that real Social Networks are Small World but that people are 
able to find the shortest path between each other so easily. Kleinberg [15] 
explained it using his own model of Small World networks.  
     Second, Barabási and Albert in 1999 [3] introduced their model of networks 
as a result of two main assumption: constant growth and preferential attachment. 
They expressed the degree sequence – the count of vertices with the same degree 
(number of adjacent edges) for all degree values found in the network. They 
show why the distribution of degrees’ values is described by a power function. 
The process of network generation is quite simple. The network grows gradually, 
and when a new node is added, it creates links to the existing nodes with 
probability proportional to their current connectivity. This way, highly connected 
individuals receive more new links than not so connected ones, and also, ‘old’ 
nodes are more connected than ‘young’ ones. It is called Scale Free model. The 
process of Scale Free networks generation has many extensions and 
modifications [12]. 
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5 Centrality measures 

Turning to the analysis of network, we start by introducing centrality measures, 
which are the most fundament and frequency used measures of network 
structure. The central vertices in Complex Networks are of particular interest 
because they might play the role of organization hubs. Centrality measures 
address the question “Who (what) is the most important or central person (node) 
in given network?” No single measure of center is suited for all application. 
     We considered five most important centrality measures [12–15]: degree 
(gives the highest score of influence to the vertex with the largest number of 
direct neighbors), radius (chooses the vertex with the smallest value of shortest 
longest path to any other vertex), closeness (focuses on the idea of 
communications between different vertices and the vertex which is on average 
‘closer’ to all vertices gets the highest score), betweenness (it can be defined as 
the percent of shortest paths connecting any two vertices that pass through the 
considered vertex) and eigenvector (acknowledges that not all connections are 
equal so connections to vertices which are themselves influential will grant a 
vertex more influence than connections to less important vertices). 
Normalization into the range [0, 1] is used here to make the centrality of 
different vertices comparable, and also independent of the size of the network.  

5.1 Degree centrality 

The simplest of centrality measures is degree centrality, also called simply 
degree. The degree centrality measure gives the highest score of influence to the 
vertex with the largest number of direct neighbors. This agrees with the intuitive 
way to estimate someone’s influence from the size of his immediate 
environment: ݇௜ ൌ ∑ ௜௝ܣ

௡
௝ୀଵ . The degree centrality is traditionally defined 

analogically to the degree of a vertex, normalized with the maximum number of 
neighbors that this vertex could have. Thus, in a network of n vertices, the degree 
centrality of vertex vi, is defined as: 

௜ݎ݁ݐ݊݁ܿ
஽௘௚௥௘௘

ൌ
௞೔

௡ିଵ
        (1) 

5.2 Radius centrality 

If we need to find influential nodes in an area modeled by a network it is quite 
natural to use the radius centrality measures, which chooses the vertex using 
pessimist’s criterion. The vertex with the smallest value of shortest longest path 
is the most central node [12]. So if we need to find the most influential node for 
the most remote nodes it is quite natural and easy to use this measure. The radius 
centrality of vertex vi, can be defined as: 

௜ݎ݁ݐ݊݁ܿ
ோ௔ௗ௜௨௦ ൌ

ଵ

௠௔௫ೕ∈ೇௗ೔ೕ
    (2) 
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5.3 Closeness centrality 

This notion of centrality focuses on the idea of communication between different 
vertices. The vertex which is ‘closer’ to all vertices gets the highest score. In 
effect, this measure indicates which one of two vertices needs fewer steps in 
order to communicate with some other vertex [13]. Because this measures is 
defined as ‘closeness’, the inverse of the mean distance from a vertex to all 
others is used.  

௜ݎ݁ݐ݊݁ܿ
஼௟௢௦௡௘௦௦ ൌ ൤

∑ ௗ೔ೕ
೙
ೕసభ

௡ିଵ
൨
ିଵ

ൌ
௡ିଵ

∑ ௗ೔ೕ
೙
ೕసభ

  (3) 

5.4 Betweenness (load) centrality  

This measure assumes that the greater number of paths in which a vertex 
participates, the higher the importance of this vertex is for the network. 
Betweenness centrality refines the concept of communications, introduced in 
closeness centrality.  
     Informally, betweenness centrality of a vertex can be defined as the percent of 
shortest paths connecting any two vertices that pass through that vertex [14]. If 
 ௟௞ሺ݅ሻ is the set of all shortest paths between vertices vl and vk passing through݌
vertex vi and ݌௟௞ is the set of all shortest paths between vertices vl and vk then: 

௜ݎ݁ݐ݊݁ܿ
஻௘௧௪௘௘௡௡௘௦௦ ൌ

ଶ∑
೛೗ೖሺ೔ሻ

೛೗ೖ
೗ಬೖ

ሺ௡ିଶሻሺ௡ିଵሻ
   (4) 

This definition of centrality explores the ability of a vertex to be ‘irreplaceable’ 
in the communication of two random vertices. It is of particular interest in the 
study of network immunization, because at any given time the removal of the 
vertex with the highest betweenness seems to cause maximum damage to the 
network in terms of its connectivity and mean distance. 
     Its main disadvantage is that the use of summation operator in practice 
requires global information about the network, in order to compute the 
betweenness of a single vertex, and that is simply not possible in many contexts. 
For the same reason it is expensive (time-wise) to compute the score of a vertex, 
although this disadvantage is recently of lesser significance. 

5.5 Eigenvector centrality 

Where degree centrality gives a simple count of the number of connection that a 
vertex has, eigenvector centrality acknowledges that not all connections are 
equal [15]. In general, connections to vertices which are themselves influential 
will grant a vertex more influence than connections to less important vertex. If 
we denote the centrality of vertex vi by ei, then we can allow for this effect by 
making ei proportional to the average of the centralities of the vi’s network 
neighbors. 

݁௜ ൌ
ଵ

ఒ
∑ ௜௝ܣ ௝݁
௡
௝ୀଵ  

 
⇒ Ԧ݁ ൌ

ଵ

ఒ
ܣ Ԧ݁  

 
ܣ⇒ Ԧ݁ ൌ ߣ Ԧ݁   (5) 

So we have ܣ Ԧ݁ െ ܫߣ Ԧ݁ ൌ 0 and the ߣ value we can calculate using detሺܣ െ
ሻܫߣ ൌ 0. Hence, we see that Ԧ݁ is an eigenvector and ߣ – an eigenvalue of the 
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adjacency matrix. Assuming that we wish the centralities to be non-negative, it 
can be shown that ߣ must be the largest eigenvalue of the adjacency matrix and Ԧ݁ 
the corresponding eigenvector. 

5.6 Computational complexity  

In this section we estimate computational complexity of centrality measures 
evaluation. 
     To compute degree centrality for the i-th node we must compute ki in time 
O(n), hence evaluation of the measure (1) for single node takes time O(n) for 
weighted (WG) and unweighted graph (UG). For all n nodes it requires time 
O(n2). 
     To compute radius centrality (2) for the i-th node we must first compute 
shortest path tree in the i-th root to compute dij for all jV. For UG it takes time 
O(n+m) using BFS algorithm and for WG – ( log )O n n m  when we use 

Fibonacci’s heap to implement priority queue in Dijkstra’s algorithm. Next, we 
must find maximal value of dij – it takes time O(n). Hence, evaluation of the 
measure for all n nodes in this case is 2(2 )O n nm  for UG and 

2 2( log )O n n nm n  for WG. 

     To compute closeness centrality (3) for the i-th node we use time 2( )O n nm  

for UG and 2( log )O n n nm  for WG (from the computation complexity point of 

view operation “max” is replaced by operation “sum”, the rest is the same like in 
evaluation of radius centrality). 
     Fast algorithm for evaluation of betweenness centrality measure has been 
proposed by Brandes [16] (faster than in [17]) and for single node it requires 
time O(m) for UG and ( log )O n n m  for WG. Hence, evaluation of the measure 

for all n nodes is equal O(nm) for UG and 2( log )O n n nm for WG. 

     Computation of eigenvector centrality for single node is estimated as 3( )O n , 

hence for n vertices this estimation is 4( )O n  (we can find better estimations). 

6 Connection efficiency 

To evaluate how well a network is connected before and after the removal of a 
set of nodes we use the global connection efficiency (GCE) [16]. We assume that 
the connection efficiency between vertex vl and vj is inversely proportional to the 
shortest distance: 

௜௝݊݋݅ݐܿ݁݊݊݋ܿ
௘௙௙௜௖௜௘௡௖௬

ൌ
ଵ

ௗ೔ೕ
    (6) 

When there is no path in the graph between vertex vl and vj we have dij = 
infinity and consequently connection efficiency is equal zero. The global 
connection efficiently is defined as the average of the connection efficiency over 
all pairs of nodes. 
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ܧܥܩ ൌ
ଶ

௡ሺ௡ିଵሻ
∑

ଵ

ௗ೔ೕ
௜ழ௝           (7) 

Unlike the average path length, the global connection efficiency is a well-defined 
quantity also in the case of non-connected graphs. 

7 Vaccination strategies 

As we mentioned earlier, random immunization of social networks is almost 
useless because Scale Free networks remain connected even after up to 80% of 
their all nodes removed (immunized or isolated). This would mean that under 
random vaccination, almost the whole population must be vaccinated to prevent 
the disease’s spread. However, a clever attack (targeted vaccination) aimed at 
“super-spreader” will disintegrate the network rapidly. So, if we know social 
network topology we can use centrality measures to identify most important 
nodes and then vaccinate only those with the highest score to stop the disease. 
     It might be harder to come up with a clever strategy when we do not know the 
topology of social network. The question here is: how to identify and/or find the 
“super-spreaders” if we are not able to calculate values of centrality measures? 
We believe that it can be accomplished with a simple modification of random 
vaccination based on a new concept introduced in [13, 14] with few 
modification. According to our computer simulation results the new vaccination 
strategy it is much more effective, also in the case when our knowledge of the 
network topology is uncertain and incomplete. 
     The idea is to randomly choose, say, 20% of the individuals and ask them to 
fill out our special questionnaires. One of the most important question in all 
forms for any disease is to name at least one acquaintance/ friend/ partner/ 
colleague etc., and then vaccinate those identified individuals (vaccinate the 
neighbors). Potential “super-spreaders” have such a large number of contacts 
that they are very likely to be named at least once. On the other hand, the “super-
spreaders” are so few in number that the random sample of individuals is 
unlikely to include many of them. Using this vaccination strategy, a disease can 
be stopped by vaccinating less than 20% of individuals. If a larger sample is 
polled, or those named twice are vaccinated the total number of vaccinations 
required can be even lower. This basic method can be modified in many ways 
and be adapted to a specific disease or virus. 
     Figure 1 shows the percentages of population that must be vaccinated using 
three vaccination strategies to reduce GCE by a factor of ten (we assumed that it 
would prevent the disease’s further spread). 

8 System overview 

Our application was implemented using Microsoft .NET 3.5 platform with SP1 
[18]. Originally, the simulator was developed as a desktop application however 
our experiences with Web applications motivated a complete modification of 
architecture. Now we use SOA (Services Oriented Architecture) with Web 
Services. The web user interface uses AJAX (Asynchronous JavaScript and 
XML) technology takes advantage of Microsoft Silverlight 2.0 solution [18]. 
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Figure 1: The effect of three vaccination strategies for different Scale Free 
networks (by the power of their node degree distribution). 

     The information is stored in MS SQL Server database which is divided into 
three parts: questionnaires and validated data from questionnaires; models of 
diseases and networks; and reports with simulation results. 
     The system consists of a server and different types of clients. The server side 
contains a few components such as the database, web services, and the 
simulation engine. At the moment there are two types of clients. First, a web 
client accessible through web browser, which contains diseases’ models editor, 
social network generators algorithms, interactive simulation with visualization 
subsystem and geo-contextual data relation based on MS Virtual Earth. Second, 
there is a mobile platform client that carries the poll application. Other 
developers could also access web services and design their completely new 
interface and/or create custom analyses. 

8.1 CARE functionality 

The application allows users: 
a) Model any kind of disease based on epidemiological knowledge; 
b) Model and generate social networks using Complex Network theory; 
c) Build special polls running on mobile devices and designed discover 

network topology; 
d) Identify “super-spreaders” and come up with the most efficient 

vaccination strategy; 
e) Simulate and visualize how the epidemic will spread in a given 

population; 
f) And assess the excepted outcomes of different vaccination strategies. 
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Figure 2: CARE architecture overview. 

 

 

Figure 3: CARE main screen. 
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Figure 4: The page with a disease source choice. 

8.1.1 Disease source 
The next step is to choose a disease model. The user has three possibilities: he 
can import it from external sources, create using the model editor or open a 
model from the database. Options no. 1 and no. 3 mean simple load graphML 
file but the second option is a very interesting feature of the system. 
     It is a good moment to explain how the system defines a disease model. 
Generally it uses a State Machine approach. It means that every disease consists 
of a few states (e.g. susceptible, infected, carrier, immunized, dead etc.) which 
can be assigned to each individual and the system allows state to change as a 
result of social interactions (contacts). So underling network topology is crucial 
problem in our simulator. For simulation we need at least two states S 
(Susceptible) and I (Infected). For realistic scenarios we make possible to define 
the model of disease with many more states and transitions between them. In the 
classical theory of infectious diseases, the most extensively studies epidemic 
models are the SIR (Susceptible-Infected-Removed) and SIS (Susceptible-
Infected-Susceptible) model.  
     We allow one to build the models of diseases with any state in the editor we 
have proposed. There is also some transition probability, minimal/maximal time 
that individual spend in state and maximal number of neighbor that can be 
infected in simulation time step. 
     Figure 5 presents AIDS model created using the model editor. 
     As we can see, the model editor also allows the user to export the created 
model to the database for a later use. 

8.1.2 Network source 
Now let’s have a look at the Silverlight client. The first thing a potential user is 
asked to do is to load or generate a network. He can do this by importing an 
appropriate file or by generating new network using our predefined generators. 
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Figure 5: AIDS model created with the model editor. 

 
 
     The system uses graphML network format to keep networks in the database 
and external sources (e.g. epidemiologists’ sources). It is a very popular xml 
format that is used by many applications working with networks. 
     Another interesting option is to use generators to generate an artificial 
network but with the same statistical properties as real social networks.  
     The algorithms generally make networks that are random graphs, Small 
World networks, Scale Free networks or their modifications. They all were 
defined in studies of authors like Watts and Strogatz (who worked on the Small 
World model), Kleinberg (who explained using his own model why people are 
able to find the shortest paths between each other in Small World model very 
easily) or Barabasi and Albert (who introduced their model of networks as a 
result of two main assumptions: constant growth and preferential attachment, 
they worked on Scale Free model). 

8.1.3 Poll application 
The first step in fighting against a disease is to get information about social 
network subject to that disease. The CARE software helps sharing the special 
poll application dedicated for mobile platforms. 
     The application could be used for instance by missionaries in Africa to get 
information about people. Designed with the purpose of decreasing costs of 
operation, the poll application could be launched on PDA or simple mobile 
phones.  Since in some remote places (say, in Africa) internet access could be a 
problem, the application stores data in a local database (deployed together with 
the application) and when the access is possible, the local data is synchronized 
with the main database stored on the server. 
     Figure 6 presents how the poll application looks like at the moment. 
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Figure 6: The poll application user interface. 

 

Figure 7: In this page the user sets up the simulation. 

8.1.4 Simulation 
The next page is the simulation setup. In here the user can either accept the 
defaults or modify several parameters: number of simulation steps and initial 
conditions for the simulation – which include the number and pattern (randomly, 
by a chosen centrality measure) of infected individuals and implemented 
vaccination strategy (random, vaccinate thy neighbor, by chosen centrality 
measure). 
     From the user’s point of view this page is perhaps the most interesting step in 
the web client. It is an evidence for statement that interactive information 
visualization is important and how visual representation of information can be 
used to demystify data and reveal otherwise hidden patterns by leveraging 
human visual capabilities to make sense of abstract information [8]. 
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     Generally the system proposes two ways of information visualization. The 
first way is called “layout” and is presented below. 
     Here the user can manipulate the network, in particular he can: 

- change a position of each node; 
- choose a layout (which means a choice of some graph balance 

algorithm); 
- set some node as the root of layout (it’s a feature suitable for tree based 

layouts like radial tree layout shown on the picture above); 
- remove nodes (equivalent to e.g. isolating some individual); 
- zoom in and out for better view; 
- start the simulation (the most important option here). 

 

 

Figure 8: The “layout” view of the simulation page. 

 

Figure 9: The “geo-contextual” view of the simulation page. 

 
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

PI-558  Risk Analysis VII



     In the upper right corner of the picture we can see the patient’s details panel, 
which presents information about the selected node (individual). 
     An alternative way to visualize information, called “geo-contextual”, makes it 
easier to become well oriented in locations of each individual. It could be very 
useful for epidemiologists which now can see all the nodes presented on the map 
and use that to make better decisions. 

8.1.5 Reports  
The last step is to analyze a report chart, which is created on the basis of the 
simulation. The x-axis represents simulation steps and the y-axis represents the 
number of individuals in each state in the current step. 
     The user can estimate the results and the effectiveness of the chosen strategy. 
In the future there will be also a possibility of getting the list of individuals that 
the system suggests to vaccinate. 

9 Summary 

Based on the defined centrality measures, we show how to discover the critical 
elements of any network. The identification and then vaccination of such critical 
individuals in a given network should be the first concern in order to reduce the 
consequence of an epidemic.  
     We believe that the CARE software has enormous practical potential in such 
regions as Africa, where there are not enough medicines to fight against 
dangerous diseases. It can be used in many various matters: automatic 
notification of hospitals, rescue services, etc. about emergency situation e.g. risk 
of epidemic (with providing coordinates and patient information). It could be 
also used by crisis management centers, epidemiology centers in the whole 
world to fight against not only terminal infectious diseases, but also any kind of 
flu etc. 
 

 

Figure 10: The page with a report chart. 
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