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Abstract 

Natural and anthropogenic factors are identified as critical in characterizing 
aquifer vulnerability in the Milan Province study area, where the impact of 
elevated concentrations of NO3

- is being assessed. In this contribution, map 
versions of continuous and categorical data layers are used to establish 
relationships between map units and the location of 305 water wells with nitrate 
levels either clearly above a threshold of 25 mg/l (impacted wells), or with wells 
clearly below that (non-impacted wells). The natural and anthropogenic data 
layers that are assumed to reflect (a) potential sources of nitrate, and (b) the 
relative ease with which nitrate may migrate in groundwater, are: population 
density, nitrogen fertilizer loading, precipitation and irrigation, the protective 
capacity of soils, land use, vadose zone permeability, groundwater depth, and 
groundwater velocity.  
     The water wells are separated first into the two groups to locate and recognize 
sites to be used to map high vulnerabilities using a prediction model based on the 
empirical likelihood ratio, ELR. Further partitions of the two sub-groups into 
prediction and validation wells allows setting up blind tests to cross-validate the 
predictions of relative vulnerability classes (ranks). Prediction-rate tables are 
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obtained and visualized either as histograms or as cumulative proportions of the 
study area in decreasing order of predicted vulnerability class versus the 
corresponding relative proportion of impacted validation wells, i.e., not used to 
predict. Predictions are thus compared and interpreted and repeated predictions 
are obtained using different sub-sets of prediction and validation wells in the two 
regions to obtain maps of uncertainty of the prediction classes. The target of the 
strategy used is not only to assess the goodness of predictions but also to 
estimate their reliability levels.  In this application the uncertainty of the classes 
in the prediction map happens to be relatively high, which is due to the small 
number of water wells available in the spatial database. 
Keywords: spatial prediction modeling, spatial uncertainty, empirical likelihood 
ratio, aquifer vulnerability, nitrate concentration, cross-validation. 

1 Introduction 

This contribution modifies a previous approach to the estimation of the 
vulnerability of groundwater to nitrate concentration [1]. The application 
problem in a study area around the city of Milan, in northern Italy, was to use the 
values of nitrate concentration in wells as an effective indicator of groundwater 
surficial contamination and of its vulnerability to further impact. This is in line 
with the European Council Directives 91/976/EC (Nitrate Directive) [2], which 
aims to protect surficial and groundwater against pollution caused by nitrate 
from agricultural practices. This is to encourage the designation of Nitrate 
Vulnerable Zones. Such zones can also be affected by non-agricultural activities, 
such as the presence of septic tanks and leaking municipal sewers in urbanized 
areas. Those authors used a database of several hundreds of water wells with 
measured nitrate concentration. The distribution of high concentration wells was 
related with a set of digital maps representing natural and anthropogenic factors 
in order to describe the potential sources of nitrate and their relative ease to 
migrate to groundwater. Their approach was based on a modeling technique 
termed “Weights-of-Evidence,” WoE, and in the application the digital maps 
were systematically binarized to facilitate the establishment of the spatial 
relationships.   
     In a recent paper, Fabbri and Chung [3] criticized these and other similar 
approaches due to either the absence of, or the incorrect use of, cross-validation 
to interpret the relative quality of the prediction maps generated by spatial 
modeling. The same database used by Masetti et al. [1] was kindly provided by 
those authors and it was used in this contribution. 
     Two major drawbacks were found in the original application of prediction 
modeling by those authors: (i) a very weak spatial support, and (ii) the lack of 
cross-validation of the prediction results.  The approach was improved also by 
using a more sophisticated version the same model that avoids data binarization. 
An analytical strategy and modeling technique, based on cross-validation by 
blind tests, was used to obtain maps of relative vulnerability of groundwater to 
nitrate pollution.  The study area database is described next, followed by the 
analytical methodology applied: the Empirical Likelihood Ratio function.  The 
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new resulting prediction maps and associated fitting- and prediction-rate curves 
are then discussed. They allow drawing conclusions on the quality and 
uncertainty of the relative measures of aquifer vulnerability interpreted using 
spatial cross-validation. 

2 The study area database 

The Milan Province study area covers approximately 2000 km2 and contains 
different agricultural and industrial land uses.  Its hydro-geologic setting is 
characterized by many aquifers with complex interactions and recharge 
conditions due to a large variety of soils, land uses and irrigation networks.   
Figure 1 shows the location of the study area and of the city of Milan.  Figure 2a 
shows the location of the water wells.  The main aquifer in the area is described 
in [1].  It is termed Traditional Aquifer, consists of Pliocene–Pleistocene 
sediments, and is unconfined.  It has a transmissivity between 5x10-2 and 1x10-3 
m2/s, and permeability between 5x10-3 and 1x10-8 m/s with a thickness between 
60 and 120 m.  The composition is of gravels and sands with an increase of clay-
silt layers southward.  The regional flow is also southward and the groundwater 
depth varies from 30 m to the north to 5 m to the south.  Over 300 water wells 
are uniformly distributed throughout the area that are monitoring four times a 
year the nitrate concentration.  That oscillates between minima around 1.0 mg/l 
and maxima around 70 mg/l, with a median close to 20 mg/l.  According to 
European Community standards [2], the guide value of nitrate in soil is of 25 
mg/l.  The most impacted part of the study area is in the northeast with values 
exceeding 50 mg/l.  The concentration decreases southward to lower values less 
than 10 mg/l.   
     According to those authors, the concentration monitored throughout time 
appears constant without temporal trends and with differences between the 
northern and the southern parts of the study area.  Statistical methods for 
regional groundwater vulnerability assessment can be used to correlate the 
measured occurrence of contaminants with the distribution of natural and man-
induced factors represented as maps.  For this purpose, a spatial database of  
 

 

Figure 1: Location of the study area in northern Italy (modified from [1]). 
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those factor maps was constructed by Masetti et al. [1], which included the 
following maps described in Table 1 and in Figure 2: occurrence of impacted and 
non impacted wells, indicator map of study area, groundwater recharge, land use, 
soil protection capacity (as categorical maps), groundwater depth, groundwater 
velocity, main annual irrigation, nitrogen fertilizer loading, population density, 
and rainfall (as continuous value maps). 
     In practice, the spatial database consists of three sets of digital maps/images 
of the same pixel resolution of 20 m and of size of 3300 pixels and 2665 lines.  
Within that image space, the study area occupies 4,908,305 pixels and the 
remaining 3,886,095 pixels are outside the study area. 
     The first set of images shows the distribution of 133 wells with high nitrate 
concentration,  25 mg/l, and that of 172 wells with lower concentration,  24 
mg/l.  The well location is assigned to single pixels, 133 and 172, respectively.  
Together, the high and the low concentration wells correspond to 305 different 
pixels in the study area.  Each well pixel is assigned a sequential numeric label 
with values 1 to 133 and 1 to 172 for the high and low concentration wells.  A 
third image indicates with value 1 the study area and with value 0 the outside. 
     The second set of images consists of the three categorical maps of Table 1 
and Figure 2(b), with short names gwr, ldu and spc, with their respective value 
ranges. 
 

Table 1:  Wells, natural and anthropogenic factors in the study area database. 

Occurrence data and study area, DSPs 
Factor map Data range Description 

133h 
172l 
Study_area 

1 to 133 
1 to 172 
1 and 0 

Index of water well  25 mg/l NO3
-  

Index of water well  24 mg/l NO3
-  

Study area indicator is 1, outside is 0 
Categorical data, ISPs

Factor map Data range Description 

gwr 
 
ldu 
spc 

classes 6 to 15  
 
classes 1 to 3  
classes 1 to 3 

Combination of  raf  and mai x a function 
of spc as infiltration coefficient 
Urban, agricultural and woods 
Low, moderate and high 

Continuous data, ISPs 
Factor map Data range Description 

gwd 
gwv 
nfl 
ma 
pod 
raf 

1-50 
11.2-18.1 
1-428 
1-790 
43-7933 
808-1253 

m 
- ln m/s 
kg/h/y 
mm 
inhabitants/km2 
mm/y 
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(a) 

 

 
(b) 

Figure 2: The spatial database for this study described in Table 1. (a) The 
distribution of impacted water wells (black circles), and of  
non-impacted water wells (gray circles). The impacted water wells 
represent the direct supporting pattern DSP. (b) The data layers 
represent the indirect supporting patterns, ISPs. 
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     The third set of images contains the continuous value maps of Table 1, gwd, 
gwv, nfl, mai, pod and raf, with their respective value ranges.  Altogether, the 
database initially consists of 12 images. 

3 Analytical method and strategy 

The modeling of spatially distributed data targets a relationship established in a 
spatial database in order to apply it to identify in a study area classes of pixels 
that to a different degree satisfy that relationship.  Chung and Fabbri [4] and 
Chung [5] used an approach they termed Favorability Function modeling, FF.  
The basic concept is that “a value at a pixel in the final prediction map can be 
assumed to be computed as a mathematical function generating the target 
pattern, given the information of the supporting patterns at the pixel.”  In that 
general approach they proposed: data structures functional to prediction 
modeling, prediction models, and strategies for processing and modeling 
interpretation in a sequence of steps.  In simple terms, their approach is 
summarized next. 

3.1 Data structures for spatial prediction modeling 

A basic element in mathematical modeling is to frame a problem in terms of a 
proposition, i.e., a mathematical statement that can be established as true or false.  
For instance, we can use our aquifer vulnerability by nitrate concentration in the 
following proposition, 

 Tp: a point p is impacted by nitrate concentration. (1) 

     In support of the proposition in (1) we can use the information available in 
our spatial database, consisting of the spatial data, described in the previous 
section, that now we can term as: (i) the direct supporting patterns, DSP (the 
133 pixels with wells with  25 mg/l nitrate, or alternatively the 172 pixels with 
wells with  24 mg/l nitrate), and (ii) the indirect supporting patterns, ISP (the 
natural and anthropogenic factor maps listed in Table 1, with either categorical 
or continuous data).  We will be using a mathematical model to establish the 
spatial relationships between the DSP and the ISPs and use them to obtain a 
prediction image, PI, based on some function related with the frequency of 
occurrence of those relationships in the database.  Such image will have to be 
displayed by recoding the predicted values into a prediction pattern, PP, so that 
appropriate colors can be assigned.  At this point we would like to interpret the 
relative quality of the PI and/or PP, for instance by verifying how the pixels of 
the DSP are distributed among the prediction classes obtained.  For this we can 
generate fitting-rate tables, histograms or cumulative curves.  Such fitting rates, 
however, may not tell us much of the prediction power of our modeling, unless 
we have another different DSP to use to validate our PI.  The distribution of the 
pixels in this second DSP among the prediction classes would provide us with a 
prediction-rate table, generally different from the fitting-rate table.  As a matter 
of fact, we can consider the observed DSP as part of a larger pattern that we can 
term Target pattern, TP.  The TP is what we would like to have from our 
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modeling but of it we only have a part represented by the DSP and it is this DSP 
that we can use to establish the spatial relationships.  Our aim is to obtain a TP 
that estimates the degree that our proposition in (1) is true for the entire study 
area.  For that we will need some assumptions later on but first we will need 
some models to establish the spatial relationships. 

3.2 Three favorability-function models based on probability theory 

Here we will consider the empirical likelihood ratio function, ELR, for spatial 
prediction modeling. It is one of the most suitable functions among several other 
ones that can be used as a favorability function.  To establish the ELR function 
for the spatial prediction model, let us define the TP, as the area with pixels to be 
impacted by nitrate concentration.  Suppose hypothetically, that the study area is 
divided into two exclusively disjoint sub-areas, M, the areas impacted by nitrate 

concentration, and M , the remaining non-impacted areas.  Consider two joint 
multivariate frequency distribution functions (m dimensional because we have m 

indirect supporting patterns, ISPs) of m supporting patterns from M and M .  
The two m-dimensional multivariate frequency distribution functions at the pixel 
p with m pixel values, (c1,  , cm ) are expressed by  f(c1,  , cm | M) from 

the impacted area, M and f(c1,  , cm | M ) from the non impacted area, M .  

The likelihood ratio function (see [6–8]) at p is defined as the ratio: 

 
)|c,,c(

)|c,,c(
)c,,c|p(

m1

m1
m1 Mf

Mf


  . (2) 

     The same likelihood ratio function is also commonly used in discriminant 
analysis for classification in statistical analysis [9].  If the m pixel values, 
(c1,  , cm) at p provide useful information for identifying areas likely to 

contain the TP, then )|c,,c( m1 Mf   is likely larger 

than )|c,,c( m1 Mf  .  That means that the frequency (probability) that the 

pixel has the m values, (c1,  , cm ), assuming that the pixel belongs to M, 

should be larger than the frequency (probability) that the pixel has the same m 

values, assuming that it comes from M .  In this case, we have that 

)c,,c|p( m1  > 1.  On the other hand, if the pixel p is likely to belong 

to M , then )c,,c|p( m1  < 1.  The range of  goes from 0 to  . 

     As discussed in Heckerman [10] and Pearl [11], )c,,c|p( m1  , or any 

of the monotone non-decreasing functions of , can be used as good 
measurements for expressing the likelihood of containing the target pattern, TP, 
at each pixel. One of the simplest monotone functions for the target mapping at 
each pixel p is the logarithm of the likelihood ratio function: 

 WoE{ p| c1,  , cm } =  )c,,c|p(log m1e  , (3) 
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which was termed as the “weights of evidence” model by Peirce [12], (see also 
Spiegelhalter [13]); and it ranges from    to + .  While WoE{ p| c1,  , 

cm } > 0 if the pixel p is likely to contain the TP, if  it  is not so, WoE{ p| c1, 
 , cm } < 0. 

     Another monotone function of  is the certainty factor function.  The certainty 
factor, CF, was first introduced, by Shortliffe and Buchanan [14], as a model for 
representing and combining evidences in medicine.  Chung and Fabbri [5] 
adapted the method to represent GIS information in the application to landslide 
hazard prediction.  The following definition of the certainty factor is one of 
them: 

 CF{ p | c1,  , cm } = 
1)c,,c|p(

1)c,,c|p(

m1

m1










, (4) 

which represents the level of likelihood that pixel p is impacted by nitrate 
concentration given the m pixel values, (c1  , cm) and it ranges between -1 

and 1.  CF is equal to zero if the likelihood ratio function is equal to 1 and the 
value of CF increases to 1 if the pixel p is likely to be impacted by nitrate 
concentration.  Thus, CF can be used as a measure of the likelihood.  An 
excellent discussion on this subject was provided by Heckerman [10].   
     Any one of the three functions in (2), (3), and (4) can be used as a favorability 
function, and it complies with the following two properties: (p1) it represents a 
relative level of likelihood that a pixel p contains a part of the TP, and (p2) using 
the known part of the TP in the training area we should be able to construct a 
favorability function and to establish the uncertainty of the function. If we 
construct an FF satisfying (p1), then we can generate a prediction image, PI, by 
computing a function value at every pixel in the study area.  Property (p2) states 
that we can generate the favorability function and its corresponding uncertainty 
function from the training area.   
     In addition we need to see that the following three assumptions are 
reasonable: (a1) the known impacted pixels in the training area are a random 
selection of all known and future impacted pixels; (a2) the supporting patterns 
are correlated with the TP; and (a3) the processes generating the impacted pixels 
is not a random process but it follows a certain rule. With assumption (a1) we 
are allowed to possibly extend the FF, which we have estimated in the training 
area, to the other pixels in the rest of the study area.  Assumption (a3) allows us 
to model the FF, and assumption (a2) allows estimate the FF using the known 
part of the TP in the training area. 
     These three functions have been extensively utilized to express and propagate 
quantitative reasoning, knowledge and uncertainties through a complex inference 
network for artificial intelligence computer systems [11, 15]. 
     All three functions are dependent on two frequency distribution functions, 

namely, )|c,,c( m1 Mf   and )|c,,c( m1 Mf  .  Without knowing all 

the TP, it would not be possible to obtain these two frequency distribution 
functions.  The frequency distribution functions and the ratio can be estimated 
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from m indirect supporting patterns, ISPs, and the known part of the TP, the 
DSP, in the training area.  
     We have categorical and continuous ISPs and in practice the likelihood ration 
function can be estimated as a multiple of two estimated likelihood ration 
functions, one for categorical data and one for continuous data.  The different 
ISPs are then integrated for each pixel using the combination rules of the model 
selected: in our case the ones for ELR that differ from the ones for the WoE or 
the ones for the CF.  Chung [4] discussed in detail the use of the likelihood 
ration function for spatial prediction modeling.  Chung and Fabbri [16] 
compared the results of applying the three models to the same spatial database 
and observed that they generate identical ranks of the prediction values.   

3.3 Strategy of processing 

In the previous sections, to assist in modeling, a terminology was presented: ISP, 
DSP, PI, PP, TP and fitting and prediction rates.  In addition, it was mentioned 
that to obtain the TP we have to consider the two properties, (p1) and (p2) and 
the three assumptions, (a1), (a2) and (a3).  In our case the DSP consists of the 
133 impacted pixels and/or the 172 non-impacted pixels, which together 
comprise a set of 305 pixels of 20 m resolution.  Correspondingly, the ISP 
consists of the 9 values at each of the 305 pixels of the map factors described in 
Table 1.  These are the basic spatial support of the database. The entire database 
for the study area, however, consists of 4,908,305 pixels and in it we have 305 
pixels for which the DSP-ISPs spatial relationships can be established.  How 
should we develop a processing strategy? 
     A first obvious strategy in such a situation is to consider a subset of the 
database with the 305 pixels corresponding to the impacted and non-impacted 
pixels as a training area and the rest of the database as a study area.  Apply the 
models to the training area and the statistics obtained from it is used to classify 
the pixels in the study area.  This will generate a PI and a PP to be then 
interpreted.  How good would they be?  How good can we consider the 
prediction?  The distribution of the 133 impacted pixels in the various classes of 
predicted values is not telling us much about the prediction power of the 
modeling.  It only expresses how well they aggregate on the ordered classes. 
     To study the relative “goodness” of the prediction classes we have to use 
some form of empirical validation.  For example, we can proceed by repeating 
the prediction within the 305 pixel database using a randomized subset of the 
training area (for instance, 80% of 133 = 106 impacted pixels to predict the 
remainder impacted pixels, 20% of 133 = 27).  We could then repeat the random 
selection n times, pretending each time not to know the 20% of the impacted 
pixels, i.e., a blind tests, thus obtaining n new prediction images and the 
corresponding prediction rates.  The analysis of those prediction rates will help 
us in assessing the relative goodness of the PI generated using all the 133 
impacted pixels.  The PI hopefully estimates the TP. 
     A second strategy could be to subdivide the training area and the study area 
into a W-region and an E-region, and then use the training area of one region to  
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Figure 3: Strategy of processing with STM. Routine names are as follows: SPM, 
Spatial Prediction Modeling, CV, Cross-validation, TMP, Target 
Mapping Preparation, TM Target Mapping, and EXT, Extension of 
prediction statistics to study area. 

 
establish the spatial relationship and extend the prediction to the other region.  
This will generate a pair of PIs, one for the E-region and another for the W-
region, with the corresponding prediction rates.  The first strategy has been used 
in the application described in the next section.  There was no reason to apply the 
second strategy in this case. 

3.4 Software for spatial target mapping 

The processing strategy is applied to the database by means of interactive and 
iterative procedures using the Spatial Target Mapping software, STM [17], in 
conjunction with a general-purpose spreadsheet and optionally a geographic 
information system. Fabbri and Chung [18], Fabbri et al. [19] and Chung et al. 
[20] discussed earlier versions of the software.  
     The main steps in the Spatial Target Mapping analytical procedure are 
described in Figure 3, as a flowchart with five STM routines (namely, SPM, CV, 
EXT, TMP, and TM) for which inputs and outputs are specified in the 
illustration.  The SPM routines are run first to obtain a PI for the training area 
and the related statistics.  Then, the CV routines are run to perform a cross-
validation to interpret the PI generated by SPM.  If the study area is the same as 
the training area, the TMP routines are run next to obtain a file of all the PIs 
requested by the statistics of the CV routines.  If the study area is not equal to the 
training area, the EXT routines are run after the SPM routines to use the statistics 
from the training area, to generate a PI in the study area.  Outputs of Target 
Mapping, TM, are the PI, the PP, the associated uncertainty pattern, UP, and the  
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prediction-uncertainty combination pattern, CP.  In addition, tables are generated 
with the distribution of the future (validation) occurrences of impacted wells, in 
the prediction classes.  A visualization of this distribution, the prediction-rate 
curve, describes the “goodness” of the prediction.   

4 Results and interpretation 

The application of the ELR model was made using a subset of the study area.  
We used a training area consisting of the 305 pixels with wells with known 
nitrate concentration, in which 133 pixels represent the distribution of wells with 
 25 mg/l of NO3

–, the DSP (i.e., the known part of the TP).  In addition, the 
training area comprises the various ISPs with the corresponding 9 values for 
each of the 305 pixels. The result of the modeling is a prediction image, PI, of 
305 pixel with predicted values, ranging between +   and -.  Figure 4 shows 
the corresponding prediction pattern, PP, of 305 colored isolated pixels in a 
background of the study area of nearly 5 million pixels.  It is almost impossible  
 
 

199   

200  

199   

200  

199   

200  

 

Figure 4: Prediction pattern of the training area of 305 pixels overlaid with 
the distribution of impacted and non-impacted wells for added 
visibility. The magnified inset shows the ranked prediction values 
of two pixels. 
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(a) 

 
(b) 

Figure 5: Fitting and prediction rates for the 305 pixel training area. (a) 
Histogram for four equal area classes with the highest values 
obtained. (b) Cumulative curves for the same rates.  

to see the 305 pixels so that an enlarged inset displays two of them with 
predicted values as ranks 199 and 200, respectively.  The pixel values were 
arranged in decreasing order to generate a histogram for an arbitrary number 
(here 200) of equal area classes corresponding to their ranks. Figure 5(a) shows 
such a histogram as gray columns that represents how well the 133 impacted 
wells are all contained within the four highest-value classes, each of 0.5% of the 
training area. In this case the ranks of the fitting rates are all within the 180-200 
range. We term these rates as fitting rates because they indicate the fitting of the 
impacted wells in the classes. As shown by the gray curve in Figure 5(b), a 
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cumulative fitting-rate curve with the same equal area classes as those in  
Figure 5(a) can also describe the distribution of the impacted wells in 
successively lower predicted classes.  Such a curve is a different way of 
visualizing the prediction results. 
     After applying the ELR model, the statistics of the spatial relationships 
computed for the 305 pixels of the training area, can be extended to the entire 
study area to generate a new PI for the remaining 4,908,000 pixels in it.  The 
corresponding PP is shown in Figure 6(a), where for visualization the predicted 
values have been sequenced in descending order and transformed into 200 equal-
area classes (0.5% of the study area, i.e., 19,540 pixels each class).  In Figure 
6(a) to the pixels within the rank value range of 200 a pseudo-color look-up table 
was assigned so that convenient groups of classes could be visualized as 
indicated by the legend. 
     The PP, however, even if it is the best prediction we can generate, because it 
uses all the impacted wells available, the DSP, does not show its prediction 
“goodness” or prediction power.  For this, short of waiting for future further 
impacts to the more vulnerable areas, or of drilling more water wells, we can 
empirically assess the prediction quality by repeating the predictions many times 
with different partitions of the impacted wells.  For instance, we can repeat the 
analysis 10 times, each time using only a randomized subset of 80% of the 133 
impacted pixels (106 wells), generate the prediction classes and verify which 
predicted classes contain the remaining 20% impacted pixels (27 wells).  Of 
course, we can select higher number of iteration and different partitions of the 
wells, depending on the known characteristics of the database. 
     This generates 10 new prediction images, and 10 new prediction-rate curves 
can be obtained by looking each time at the proportional distribution of the 27 
impacted wells now used for validation and not for prediction.  The histogram in 
Figure 5(a) shows the prediction rates as black columns and the black curve in 
Figure 5(b) shows the average of the 10 prediction rates obtained.  In the 
diagram, the horizontal axis indicates the cumulative proportion of study area 
and the vertical axis the corresponding cumulative proportion of the impacted 
wells (133 for the fitting rates, and different sets of 27 for the prediction rates). 
     The prediction-rate curve shows that the prediction power is not what we 
would expect from the fitting rate curve.   
     We can explore the distribution of the uncertainty values for the different 
classes of the PP.  The cross-validation analysis, in this case of 10 predictions 
with 10 different 80% subsets of randomized occurrences, provides us with a 
measure of the uncertainty associated with the class assignments of the pixels. 
     We can generate the statistics of the variation of values of the pixels in the 10 
prediction images computed, and obtain an uncertainty pattern, UP, shown in 
Figure 6(b).  It shows the relative percentage of variation among the 10 predicted 
values for each pixel of the PP.  Figure 7 shows a threshold of the PP in Figure 
6(a) at levels below the 5% of the uncertainty, the variance, from the PP in 
Figure 6(b).  As can be observed comparing Figure 6 with the combined pattern, 
CP, in Figure 7, some of the highest prediction classes and some of the lowest  
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(a) 

 
(b) 

Figure 6: The prediction pattern, PP, obtained extending the prediction from 
the 305-pixel training area to the study area in (a), with differently 
colored percentages of ranks and the distribution of the impacted 
wells. In (b), the corresponding uncertainty pattern, UP, is shown 
with differently colored intervals of relative variance.  
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Figure 7: The combination of prediction pattern and uncertainty pattern, UP, 
at 5% of the relative variance. The color legend is the same as in 
Figure 6(a). 

correspond to very high uncertainty, i.e., with high relative variance, well over 
5%. 
     The CP in Figure 7, and not the PP in Figure 6(a), should be considered the 
meaningful result of the analysis, i.e., the acceptable estimation of the TP.  
     Figure 8 shows the 10 prediction-rate curves together with the average 
prediction-rate curve also displayed in Figure 5(b), as a black curve.  The 
prediction has a remarkably wide range of variation, considering that 2% of the 
training area contains all the predicted wells. 
     The PP with the respective UP, CP and prediction-rate curve, describe the 
relative “goodness” of the database and its capability to represent aquifer 
vulnerability to pollution by NO3

-.  The spatial support of only 305 pixels in the 
training area to establish spatial relationships and extend them to 4,908,000 
pixels of the study area is clearly very weak.  This can be observed in the CP of 
Figure 7 and the variability of prediction-rate curves in Figure 8.  For this reason, 
not much confidence can be assigned to the predicted values outside the area 
visible in the CP of Figure 7. 
     These are the basic properties of the spatial database.  Any other prediction or 
interpretation will have to be related with these results. 
     The STM software makes it possible to assess the basic properties of the 
database.  Any other prediction model application or analytical strategy will have 
to be take these results into consideration.  STM implies an analytical strategy 
based on cross-validation of the prediction results, so that their relative 
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Figure 8: The ten cumulative prediction-rate curves obtained by cross-
validation and their average curve as a heavier line. They 
correspond to the 10 predictions described in the text. 

“goodness” and the robustness of the predicted values can be assessed.  Had such 
a strategy been used earlier in this application, it would have guided to a more 
cautious interpretation of the significance of the database. 

5 Concluding remarks 

In this study we have revisited the application of spatial modeling by Masetti et 
al. [1], who provided their database for aquifer vulnerability assessment in a 
study area around the city of Milan, in northern Italy.  
     Two major drawbacks were found in the original application: (i) nitrate 
concentrations were observed at 305 wells only, 133 wells were treated as 
impacted pixels, 172 as non-impacted pixels, and in addition, the remaining 
study area was also assumed as a set of non-impacted pixels to establish the 
spatial relationships; and (ii) the lack of cross-validation to establish the 
uncertainty of estimation.  Those drawbacks were corrected in this analysis and 
an improvement was made by using the empirical likelihood model, ELR, 
instead of its simpler version, the WoE, in which spatial data are generally 
binarized.   
     A different analytical approach was used, that redefined data structures for 
modeling, included three favorability function models based on probability 
theory, a processing strategy based on the properties of the database, and a new 
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spatial target mapping software, STM.  The three models are known to generate 
identical ranks of predicted values.  The analysis could only be based on the very 
weak spatial support of a training area of 305 pixels to generate a prediction in a 
study area of almost 5 million pixels.  The resulting prediction pattern is affected 
by high uncertainty that was assessed by cross-validation via the 10 blind-tests of 
10 iterations of predictions with subsets of the training area database.  The STM 
software permitted the suitability assessment of the entire database for aquifer 
vulnerability prediction.  
     The results are in line with the views of Chung and Fabbri [3] on the need to 
apply cross-validation via blind-tests to explore the viability of spatial databases 
in prediction modeling.  It is commendable that scientists share their data to 
broaden the interpretability of the prediction patterns and the understanding of 
the prediction models. 
     In this application we have not discussed the causes of the impacts on the 
water wells in line with the new results obtained.  This will be the subject of a 
future contribution. 
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