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Abstract

In Romania, landslides are a frequent reality in the geomorphologic landscape,
particularly in the plateau units, with favourable conditions for the occurrence of
such phenomena. This paper focuses on the applicability of landslide
susceptibility assessment, by using a logistic regression approach, to a sector of
lasi Cuesta in the Moldavian Plateau, where landslides happen to a significant
extent. Ortophotoimages, topographical and geological maps were used as input
data. The landslide inventory, multicriteria qualitative and quantitative analysis
and GIS application have facilitated data processing and spatial visualization
results. A database of landslide and landslide causative factors was constructed,
consisting of several environmental data layers: land use as a qualitative variable
and geomorphometrical parameters as quantitative variables. The latter were
obtained from a DEM, at a resolution of 20x20 m, derived from 1:25,000
topographic maps. Application of this model at the scale of one small
administrative unit (commune) shows that landslide occurrence is best explained
by terrain slope, land use and altitude. The landslide susceptibility map reveals
that terrains displaying high and very high susceptibility represent about 29% of
the study area. The logistic regression model seems to be an adequate tool for the
assessment of landslide susceptibility in an objective and quantitative manner,
providing also parameters allowing the evaluation of the output quality. Starting
from primary data sources at fine scales (1:5000), our model may be extended to
other similar regions in the Moldavian Plateau.

Keywords: landslide susceptibility assessment, GIS application, logistic
regression, geomorphometry, Moldavian Plateau, Romania.
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1 Introduction

In Romania, landslides are a frequent reality in the geomorphologic landscape,
particularly in the Transylvanian Depression, Moldavian Plateau, Getic Plateau
and Subcarpathians, where the conditions are favourable, determined mainly by
the geological, geomorphological, hydrogeological and climatic background and
by human factors. These affect mostly agricultural land, but also human
settlements, infrastructure and economical facilities.

The national literature of this branch of science comprises studies devoted to
these phenomena, which differ according to the objectives, level of approach,
terminology and methodology [21]. In particular, after the great recrudescence of
landslidings due to the pluviometric excess from 1970-1972 and the earthquakes
from 1977, when all information about these phenomena came to be insufficient,
complex studies of land use planning claimed deep knowledge of the landsliding
process, foreseeing and prognoses. Landslide risk zoning constitutes the subject
of several recent studies, [7, 18], and the results are rather heterogeneous due to
different methods, scales, levels and types of zoning. At a legislative level,
efforts are being made for the approach to landslides to be brought under the
regulation of a general framework, by promoting and approving methodological
guidelines concerning the elaboration and the content of landslide risk maps
[14].

At international level, numerous researches are dedicated to the assessment of
landslide risk and recent studies reveal different approaches: heuristic [10, 25,
26], statistical (bivariate or multivariate statistics) [5, 24], probabilistic [12, 16]
and deterministic [2, 15]. Basic theories on landslide hazard prediction and risk
assessment are summarized by Yin et al [28]. It is worth mentioning the
attempts towards the establishment of a common language and of standard
procedures in landslide risk zoning, which may contribute to widening of their
applications and facilitating the comparison among different geo-environmental
contexts, such as the Guidelines proposed by JTC-1 the Joint Technical
Committee on Landslides and Engineering Slopes [13]. An important issue is to
relate the level of zoning to the required outcomes and to the scale of zoning [9].

This paper focuses on the applicability of landslide susceptibility assessment,
by using a logistic regression approach, at the scale of one administrative unit
(commune) where landslides have a significant extent.

2 The study area

The study area belongs to Moldavian Plateau which occupies eastern part of
Romania, more precisely, it refers to the territory of Lungani commune (lasi
County), with a surface of 63.37 km?, covering, in part, a sector of lasi Cuesta,
along the right side of Bahluiet river, fig. 1.

From morfostructural point of view, the Moldavian Plateau belongs to
western borderline of the great East-European Platform with Oriental
Carpathians orogen and the sedimentary counterpane is made up, to top,
especially of Sarmatian deposits.
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Figure 1: Location of the study area.

The lithology is represented by predominant marl-clay, sandstone and sand, in
alternating layers of very different thickness from one region to another.

The climate is temperate-continental, the wide eastwards opening favouring
the manifestation of some excessive continentalism traits (high temperature
variations, uneven precipitation regime, frequent droughts).

From geomorphological point of view, large structural plateaus and narrow
interfluves up to the intersection crests of slopes are characteristic, alternating
with large valleys, asymmetric in most of the cases. Cuestas are characteristic,
with their fronts affected by an increased frequency and intensity of the mass-
movement processes.

Among factors that trigger the process of landsliding the role played by the
monocline structure, the alternation of the permeable with the impermeable rocks
and the climatic factors (relative abundance of rainfall during the Mai-June
period and heavy rains in summer) is obvious both for small and big landslides.
In addition, in general landslides appear more frequently where man destroyed
the vegetation by deforestation, intensive pasturing etc.

Landslides show great diversity of forms and thicknesses of deluvium, from
superficial to landslides exceeding 30 m in depth. Most of the times, they are
represented by complex associations, generalized on entire areas of slopes.

Concerning the age of landslides, it was concluded that there was a vast phase
of modelling through landslide process located at the end of Pleistocene or in the
transition period between Late Wiirm and warm period of postglacial
(Preboreal). Massive landslides developed at that time are partially reactivated
when pluviometric surpluses are reached [21]. According to Bacauanu et al. [6]
the deluvial processes of the Moldavian Plateau record a certain cyclicity, with
intensification periods corresponding to the periods with excessive humidity, of
almost 30 years.

At present, we may find a general stabilization tendency of landslides because
of the raising with about 5-20 m of the denudation basis of slopes, as a result of
the aggradation tendency of the flood-plains [8].
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3 Materials and methodology

Conforming to the well-known principle “past and present are keys to the future”
the characteristics of existing landslides can be used to evaluate the possible
areas of future landslides [5].

The input data used for our study is represented by ortophotoimages,
topographical maps, geological maps and specific information extracted from
GUP (General Urban Plan) provided by local administrations.

Landslides and landslide causative factors database was constructed,
consisting of several environmental data layers. Land use is the only qualitative
variable considered in our study, while the rest of variables are represented by
geomorphometrical parameters (slope angle, slope aspect, mean curvature, plan
curvature, profile curvature, distance to drainage network), obtained from a
digital elevation model (DEM), at a resolution of 20x20 m, derived from
1:25,000 topographic maps. Apart from geomorphometrical parameters, we also
tested the influences of mean annual precipitations. Descriptive statistics for
these variables are presented in table 1. The surface lithology is relatively
uniform throughout the region (dominated by Sarmatian clays) and the
groundwater has a discontinuous character, being close to surface along the
floodplains and greatly influenced by deficitary precipitation regime.
Consequently, these factors were not included in our analysis.

Spatial analysis was performed using TNTmips 6.9 software [20] and ArcGIS
9.3 software [3], while statistical analysis was carried out using Excel 2003 and
XLSTAT 2010 software [27].

The analysis of landslide susceptibility is based on application of the logistic
regression model [1, 4, 11, 17]. The logistic regression uses binary dependent
variable and continuous and/or categorical predictors. It applies the maximum
likelihood estimation after transforming the dependent variable into its natural

Table 1: Descriptive statistics for the landslide area and potential predictors.
Variables Minimum Maximum Mean S.td'.
deviation
Landslide area (ha) 1.035 146.372 26.130 27.953
DEM (m) 61.921 312.678 131.921 44.769
Slope (°) 0.027 18.060 7.376 3.640
Aspect (°) 0.127 239.709 109.638 68.425
Distance to drainage network (m) 0.144 977.096 166.421 132.275
Mean curvature (rad./m) -0.450 0.531 -0.006 0.136
Plan curvature (rad./m) -0.390 0.418 0.001 0.080
Profile curvature (rad./m) -0.505 0.310 0.007 0.090
Mean annual precipitations (mm/yr.) 480.752 580.426 519.692 16.982
Land use (landslides density) 0.000 1.000 0.180 0.267
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logarithm, estimating the probability of a certain event to occur [5, 23]. The
logistic regression model is described by the following equation:

Pz; (1)
l1+e™”

where, P is the probability of an event (landslide) to occur, which varies from 0
to 1 on an S-shaped curve; z is a linear combination of predictors (x; ... xp):

z=by+b x,+ b, x, +..+b, x, ()

where, by is the intercept of the model and b, ... b, are the regression coefficients.

It is generally recommended to use the “seed cells” approach [19, 22], that is
to extract predictors values form points situated in the vicinity of landslides
polygons and not from landslide area, where the fragmented terrain causes
important variations of geomorphometrical parameters. This approach was not
applied in our study for the following reasons: landslides often cover an entire
slope facet, the geomorphometrical parameters changing significantly outside the
landslide area; the DEM derived on the basis of 1:25,000 topographical maps
renders a more general terrain configuration and therefore, the extraction of
predictors values from landslide areas themselves in not influenced by its real
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Figure 2: Locations of grid points inside and outside the landslide area.
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fragmentation. Instead, we generated a total number of 3040 equally distanced
grid points for the landslide and landslide free areas, fig. 2. The points density is
higher in the landslide area because of the need to obtain equal samples for the
landslide and the landslide free areas. Land use, the only categorical predictor in
our analysis, was transformed into a quantitative predictor by computing the
landslide density for this parameter [5].

4 Results and discussion

4.1 Landslide susceptibility zoning

For susceptibility zoning the key parameter is the landslide inventory and its
level and quality also depends on understanding the role played by predisposing
factors on landsliding [13].

Landslides affect about 1542 ha, representing 24.6% of the commune surface,
occurring especially on cuesta fronts and being in different evolution stages. The
database included 59 landslides delimited by means of large scale mapping
(1:25,000, 1:5000) or by using aerial photographs and also by field studies in
order to verify the size, shape and especially the state of activity of landslides.

Most of landslides are detrusive, inconsistent, with depths between 2-10m and
the relatively stabilized ones are predominant, affected on sporadic areas by
active landslides.

The Pearson correlation matrix computed for potential predictors, as shown in
table 2, reveals that there is a certain amount of co-linearity among variables,
which imposes their selection.

The standardized regression coefficients show that landslides occurrence is
best explained by terrain slope, land use and altitude. Running the XLSTAT
2010 module, the mean curvature is automatically eliminated due to its multi co-
linearity. We further eliminated the mean annual precipitations and the terrain
exposition on the basis of Chi-square (Wald) test. The output from remaining

Table 2: Pearson correlation matrix for potential predictors.

DEM | SLOPE | ASPECT | DIST [ MEANC |PLANC |PROFILEC | PRECIP | LANDUSE
DEM 1.000( 0.144 | -0.111 ]0.245| 0.226 | 0.048 -0.297 0.870 -0.143
SLOPE ]0.144] 1.000 [ 0.130 [-0.063] 0.041 0.040 -0.025 0.048 0.280
ASPECT |-0.111} 0.130 | 1.000 |-0.132] 0.002 | 0.019 0.013 -0.230 0.290
DIST 0.245] -0.063 | -0.132 [1.000] 0.344 | 0.220 -0.321 0.211 -0.164
MEANC |0.226] 0.041 | 0.002 |0.344] 1.000 | 0.767 -0.823 0.099 -0.075
PLANC (0.048] 0.040 | 0.019 [0.220| 0.767 | 1.000 -0.266 -0.025 -0.044

PROFILEC|-0.297] -0.025 [ 0.013 [-0.321] -0.823 | -0.266 1.000 -0.171 0.074

PRECIP [0.870] 0.048 | -0.230 [0.211] 0.099 [ -0.025 -0.171 1.000 -0.306

LANDUSE |-0.143] 0.280 | 0.290 [-0.164] -0.075 | -0.044 0.074 -0.306 1.000
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6 variables was compared to the output from the model using only the 3
predictors mentioned above. We found that the two statistical models are very
similar. Because using 6 predictors instead of 3 does not significantly improve
the model, we decided to further use the latter.

From the spatial distribution of landslide susceptibility, displayed in fig. 3, we
notice that indeed the terrain slope plays a major role in explaining landslides
spatial distribution. Landslide susceptibility index for the study region is
characterized by a mean value of 0.375 and a standard deviation of 0.332. The
regression coefficients show that landslides occurrence are positively related to
terrain slope and land use and negatively related to altitude, as shown in table 3.
The quality regression parameters indicate a fairly good model, with a Root
Mean Square Error of 0.348, table 4. The percentage of correctly classified
points is 81.59% in the landslide area and 84.02% in the landslide free area,
while the overall prediction accuracy is 82.80%, table 5.

The classification of landslide susceptibility was based on natural breaks
method (Jenks), which identifies the class breaks that best group similar values
and maximizes the differences between classes.

Table 3: Logistic regression coefficients.
Intercept / Regression Standard . .
Predictors coefficients error Wald Chi-Square Pr> Chi
Intercept -1.906 0.195 95.141 <0.0001
DEM -0.020 0.001 175.113 <0.0001
Land use 5.088 0.327 242.409 <0.0001
Slope 0.506 0.020 625.169 <0.0001
Table 4: Quality parameters of the logistic regression model.
Quality parameters Values
-2 Log(Likelihood) 2339.672
R*(McFadden) 0.445
R?*(Cox and Snell) 0.460
R*(Nagelkerke) 0.614
Area under ROC curve 0.91
RMSE 0.348
Table 5: Numbers and percentages of the correctly classified points.
from \ to 0 1 Total % correct
0 1272 242 1514 84.02%
1 281 1245 1526 81.59%
Total 1553 1487 3040 82.80%
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Figure 3:  Spatial distribution of Figure 4:  Classified landslide
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Figure 5: Percentages of landslide susceptibility classes.

Spatial distribution of continuous landslide susceptibility is given in fig. 3 and
classified landslide susceptibility, in fig. 4. The latter shows that more than half
of the study area is characterized by very low and low landslide susceptibility,
while the terrains displaying high and very high susceptibility represent about

29% of its surface.

4.2 Exposure to landslide risk

The human elements subject to landslide risk are the buildings from the 4
villages in the study area and the roads network (mostly agricultural roads),
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which were digitised using the 1:5000 topographic maps. We inventoried 1640
buildings with a total surface of 82.516 ha and 170 km of roads.

Overlaying the considered human elements (buildings and roads), exposed to
landslide risk, we found that about 14% of buildings (11.6 ha) are situated in
high and very high landslide susceptibility areas and about 15% of the road
network (25 km) crosses these landslide susceptibility classes, figures 6, 7 and 8.

To refine these results in the future, more data related to elements at risk
should be collected, including population and the replacement value of buildings
and roads, as well as the value of agricultural crops.
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Figure 6: Landslide susceptibility classes for buildings and roads.
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Figure 7: Percentages of landslide  Figure 8:  Percentages of landslide

susceptibility classes at
building locations.

susceptibility classes
along the road networks.
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5 Conclusions

Landslide susceptibility zoning can be a powerful tool to improve land-use
planning, an efficient way to reduce future negative consequences caused by
landslides.

The logistic regression approach seems to be an adequate tool for the
assessment of landslide susceptibility in an objective and quantitative manner,
providing also parameters permitting evaluation of output quality.

Application of this model at the scale of one small administrative unit
(commune), where landslides represent a frequent geomorphologic phenomenon,
shows that landslides occurrence is best explained by terrain slope, land use and
altitude. In addition, significant percentages of the landslides and of areas with
high and very high landslide susceptibility are mainly located on slopes exposed
towards west and north-west, corresponding to cuesta fronts.

Generally, in the study area, the settlements and the road network avoided
slopes exposed to landslide risk, but there still are numerous areas obviously
displaying such a risk. Even though most of the roads are for agricultural
purposes, some road sectors linking villages are in high and very high
susceptibility areas.

The medium landslide susceptibility class should be included as an area
category where buildings must have increased safety measures. Further
development of the infrastructure should avoid areas with high and very high
landslide susceptibility.

Starting from the primary data sources at fine scales (1:5000), our model may
be extended to other settlements situated in similar geological and
geomorphological conditions in the Moldavian Plateau.

Furthermore, a complete landslide risk zoning requires both landslide hazard
zoning and the estimation of community vulnerability to landslides. For landslide
hazard zoning an estimated frequency (annual probability) of landsliding is
assigned to each category of the landslide susceptibility map. The evaluation of
community vulnerability to landslides is accomplished by also taking into
account economic and social indicators.
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