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Abstract 

This paper presents an improved method for the damage severity estimate for 
lattice structures based on the employment of the substructure modal strain 
energy (SMSE). The significant advantage associated with the improved method 
over traditional modal energy methods is that it can directly use the mode shape 
of the damaged element to quantify damage severity exactly. Additionally, the 
new method does not require the analytical and measured modes to be consistent 
in scale, or to be normalized. Numerical studies in this paper are conducted for a 
three-dimensional frame structure based on synthetic data generated from finite 
element models. 
Keywords: damage quantification, substructure energy, modal analysis. 

1 Introduction 

The properties of the truss material that appear most attractive are those that 
govern the use of the truss as cores for sandwich structures as having lower 
weight than competing materials, and potentially superior heat dissipation, 
vibration control and energy dissipation characteristics [1]. The mechanical 
properties of lattice structures may degrade severely in the presence of damage. 
Structural damage often occurs in one or more elements of a structure with a loss 
of stiffness. These changes in structural properties in turn alter the dynamic 
response behaviour of the structure from its pre-damage condition. Therefore, it 
is common to monitor structural health condition using data obtained from an 
associated vibration testing. 
     A number of approaches to the damage severity quantification exist [2]. The 
modal testing and analysis method seeks to determine the modal parameters, 

 
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

doi:10.2495/RISK100301

Risk Analysis VII  PI-349



including natural frequencies and mode shapes, from the measured responses, 
and then detect damaged element from these data, or their combination, such as 
modal strain energy (MSE). Traditionally, the damage detection methods based 
on modal data can be classified into two major groups: iterative methods and 
non-iterative methods [3]. Almost all of damage quantification methods base on 
modal strain energy [4, 5] belong to the first of these two groups. For iterative 
methods, spatially complete measured modes is not necessary, but there are some 
disadvantages: possibility of solutions being divergent, demand on excessive 
computational time, requirement to pair measured and analytical modes, 
requirement to scale measured and analytical modes [6]. To avoid these 
problems, Hu et al. [7] develop a non-iterative MSE-based method which can 
exactly quantify the severity of the damage in the 3D frame structures. However, 
the existing non-iterative method requires the information of spatial complete 
modes measured from the damaged structure. In practice, the degrees of freedom 
of the structure are usually very large, and also only a limited number of the 
lowest vibration modes of the system can be measured accurately. Many 
techniques that appear to work well in example cases actually perform poorly 
when subjected to the measurement constraints imposed by actual testing. 
Techniques that are to be seriously considered for implementation in the field 
should demonstrate that they can perform well under the limitations of a small 
number of measurement locations [2].  
     An improved damage severity quantification method is developed in this 
paper based on the substructure modal strain energy. The improved algorithm 
can exactly quantify damage severity only using the mode shape of the damaged 
member in the structures.  

2 Substructure modal strain energy method 

     The structure of the lattice beam is composed of a sequence of identical unit 
cells. Each cell is composed of beam elements assembled to form a lattice 
structure. The equivalent system with repetition characteristic is shown in Fig. 1.  
 

 

Figure 1: Equivalent system (A) unit (B). 

The total modal strain energy of the structure considered may be expressed as 
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in which j  denotes the modal strain energy of the jth substructure and N 

denotes the total number of substructures. The substructure modal strain energy 
(SMSE) may be defined as 

 T
j j j j Φ K Φ , (2) 

where jK  and jΦ  denote the stiffness matrix of the jth substructure and the 

eigenvector for the jth substructure respectively, and superscript T is used to 
indicate transpose operator. The stiffness matrix of the substructure is 

 j subK K . (3) 

     For repetitive structure, the eigenvector jΦ  is made up of the left and right 

nodal displacement vectors 

  T

j L R j
Φ Φ Φ . (4) 

in which { }L jΦ  and { }R jΦ  denote the nodal displacement vectors on the 

common boundary between the j-1, j+1 and jth substructures, respectively. The 
continuity condition may be expressed 

 1{ } { } ,  1, 2, ,L j R j j N  Φ Φ   (5) 

     Assume the stiffness matrix d
jK  of the substructure of the damaged structure 

is modification of jK . 
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   K K K ，  (6) 

in which ,j zK  is the stiffness of the zth element in the jth substructure, and 

,j z  is the correction factors of the stiffness matrix, jD  is the total number of 

damaged elements in the jth substructure. Superscript d is used to indicate 
damage version. 
     A residual force is used in the present formulation to simulate modification of 
stiffness matrix 

  , ,
1

jD
R d
j j z j z j

z




F K Φ , (7) 

where d
jΦ  denote the eigenvector for the jth damaged substructure. We get the 

substructure modal strain energy of damaged substructure 

 
1

2
d dT d dT R
j j sub j j j  Φ K Φ Φ F . (8) 

     Applying the U-transformation [8] to d
jΦ and R

jF  
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in which 2 / N   and 1i   ， substituting into Eqs. (7) (8) (9) and (1), 

we get the substructure modal strain energy d
k  of the damaged structure in U-

domain 

 
1

2
d T T R
k k sub k k k  q K q q f , (10.a) 

the continuity condition 

 , ,
ik

k R k Le q q  (10.b) 

     The inertia force 2d d
sub j M Φ  ( d  is the corresponding eigenvalue) is 

added into system as loading vector. Damping is not considered in this paper. By 
the equation of variation, one gets 

  * 2 * *
,

d
sub sub k L k K M q f , (11) 

 

in which * T
sub k sub kK T K T , * T

sub k sub kM T M T , * T
k k kf T f , 

Tik
k L Re    T I I , and the superior bar means the equation with complex 

variables. Applying the inverse U-transformation 

 ( 1)

1

1 N
i j k d

k j
j

e
N

 



 q Φ , ( 1)

1

1 N
i j k R

k j
j

e
N

 



 f F ,  

we get the expanded governing equations for free-vibration of the damaged 
structure 
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in which ( ) * 2 * 1
,
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

 H T K M T , j = (1, …, N), N 

is the number of substructures, Nd is the number of damaged substructures. In 
general, a structure has some other disordered substructures, such as the border 
substructures or poling units, and then these disordered terms should be added as 
the loading for the structure. Nb is the number of border substructures. According 
to Eq. (12), we get 
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Φ B Φ , (13) 

in which 
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and ,
d
p zΦ  is the eigenvector of the damaged member. Pre-multiplying the 

equation in the Eq. (13) by ,
T
p zΦ  (eigenvector of the corresponding member in 

the undamaged structure), and using a new index Z to replace (p,z), we get 
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Z Z Z
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where  
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
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Written in a matrix form, one has Γ Cα in which C  is E DN N  matrix, Γ  

is column vector of size EN , and α  is column vectors of size DN . It is worthy 

to mention that those modes Φ  and dΦ  of the undamaged and damaged 
structures can be arbitrary modes of the baseline and true structures in the sense 
that they are not required to start from the first mode and be the matching modes. 
     An estimate for correction factors, denoted α


, is obtained as  

 

   1 T
 Tα C C C Γ


. (14)  
 

     The core of the improved algorithm is to formulate simultaneous linear 
equations associated with substructure modal strain energy (SMSE). The 
significant advantage of the SMSE method over other non-iterative methods is 
that the spatially complete mode shape is not needed. Additionally the improved 
algorithm does not require the analytical and measured modes to be consistent in 
scale, or to be normalized.  

3 Numerical examples 

Numerical examples are given below to demonstrate the accuracy of the SMSE 
method for 3D lattice structures. The considered structure features a beam-type 
lattice with elements arranged according to a square configuration as shown in 
Fig. 2, where each structural member is modeled as a three-dimensional uniform 
beam element and is distinguished by assigning an element number. This 
structure has the same configuration as structure used by Hu et al. [7]. The length 
of all horizontal members oriented in the x direction is 1 m, all horizontal 
members oriented in the y direction 3 m, and all vertical members 1 m. Young’s 
modulus E is a constant equal to 2.1×1011 Pa for all members before damage, the 
cross-section area and the associated moment of inertia for all members are 
A = 2.825×10−3 m2 and I = 2.89×10−6 m4, respectively. All computations in this 
paper were done in Matlab. 
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     Three particular tasks are to be performed. Task 1 considers three single-
damage scenarios, with 5% stiffness loss at a column (element 18), a long-span 
beam (element 22), and a short-span beam (element 23), respectively. Task two 
considers the same single damage scenarios investigated in Task one, but under 
the assumption that the measured mode shapes are contaminated by uncorrelated 
random errors. Assuming that two damaged elements presented in Task one take 
place simultaneously in the structure, Task three investigates the capability of the 
method on quantifying severity for multiple damaged elements. Performing the 
eigen-analysis, one obtains the mode frequencies and shapes of the undamaged 
and damaged structures. Table 1 summarizes the five single and multiple damage 
scenarios. Listed also are the first five frequencies of the undamaged and the five 
damaged structures. Fig. 3 shows the first five mode shapes of the undamaged 
structure. 
 

Table 1:  A summary of the undamaged and damaged structures. 

Structure
Damaged 
element 

Stiffness 
Loss 

Frequency 

1st 2nd 3rd 4th 5th 

undamaged None 0% 6.9105 9.3615 11.2781 23.0373 29.3154 
A 18 5% 6.9084 9.3561 11.2719 23.0252 29.3037 
B 22 5% 6.8958 9.3615 11.2765 23.0074 29.3151 
C 23 5% 6.9105 9.3480 11.2632 23.0373 29.2786 
D 18&22 5% 6.8938 9.3561 11.2703 22.9950 29.3034 
E 22&23 5% 6.8958 9.3480 11.2616 23.0074 29.2783 

 
 
 

 

Figure 2: The sketch of the structure (A) and substructure (B). 
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Figure 3: The first five modes of the undamaged structure. 

3.1 Single damage scenarios without noise 

In task one, three single damage scenarios (structure A~C) shown in Table 1 are 
performed. According to Eq. (13), the measured modes only need the DOFs of 
the damaged elements. Taking the first mode for both the undamaged and 
damaged structures, i.e., mb = md = (1) (hereafter mb and md indicate the mode 
number for the undamaged and the damaged structures, respectively); one 
exactly obtains the damage severity α


 = 5%. One also gets accurate results α


 

for damage at element 22, and 23 using the SMSE method. When the damaged 
elements occur in any substructure, one also yields the correct results α


 using 

any mode for both the undamaged and damaged structures. 

3.2 Single-damage scenarios with noise 

Due to unavoidable errors in instrumentation and measurements, measured data 
are often contaminated with noise. The random error (modal noise) of the 
measured mode shape is quantified in percentage. Herein a modal noise level of 
5% indicates the standard deviation of the random error is 5% of the true modal 
value at each corresponding coordinate. Task two considers three single damage 
scenarios (structure A~C). A 5% change in several entries of each eigenvector 
was randomly introduced [7]. This error propagation from the measured mode 
shapes to the estimate of the severity will be studied by using Monte Carlo 
simulations. 
     The goodness of the estimate for the damage severity is judged based on both 
statistical accuracy and precision. The biased percentage error (a statistical 
measure of accuracy) of the estimated damage severity [7], denoted by  
 
 

100%b

 



  , 

where   is the sample mean of the estimated damage extent from simulations, 
  is the true damage severity. The random percentage error (a statistical 
measure of precision) of the estimated damage severity [7], denoted by 
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100%r



  , 

in which   is sample standard deviation of the estimated   computed from 

simulations. 
     5000 Monte Carlo simulations are always repeated for each case under 
investigation. The measured modes only need the DOFs of the damaged 
elements. One takes from the 1st to the 5th mode respectively for both the 
undamaged and damaged structures, i.e., mb = md = (1, 2, …, or 5). Table 2 

provides the simulated results of b  and r  for the five exercises, using the 

SMSE method. For the damaged structures B and C, taking any mode, the results 

of b  and r  is statistically good. For the damaged structure A, taking the first 

three modes, it is noticed that the modal noise has a much larger effect on the 
accuracy and precision of the severity quantification for a column damage than 
on that for beam damages. While one takes the 4th, or 5th mode, the results of 

b  and r  is statistically good. Notice that the 4th and 5th modes have distinct 

deformation in the substructures. Then this can attribute to the fact that damage 
typically is a local phenomenon, and local response is captured by higher order 
modes whereas lower order modes tend to capture the global response of the 
structure and are less sensitive to local changes in a structure. Testing on 
structures having damage in different substructures also yields the similar results.  
     From the above numerical exercise, a few guidelines can be summarized. 
First, it is good to use any modes for any damaged beam. Second, it is required 
to choose the modes that have noticeable local response for damaged columns. 

Table 2:  Results of biased and random percentage errors of single-damage 
severity estimate on 5% modal noise level, using SMSE. 

Exercise Modes 

Structure A Structure B Structure C 

Element 18 Element 22 Element23 

b  r  b  r  b  r  

1 mb=md=1 80.13 5624.70 0.03 4.95 0.12 4.53 

2 mb=md=2 994.73 8204.50 0.10 4.75 0.17 4.66 
3 mb=md=3 20.77 499.22 0.23 5.65 0.13 4.57 
4 mb=md=4 0.58 7.10 0.03 5.76 0.13 39.32 
5 mb=md=5 1.54 12.99 0.12 7.09 0.14 10.89 

3.3 Multiple-damage scenarios 

Two multi-damage scenarios (structure D ~ E) as shown in Table 1, are 
investigated. Again, all damaged members are with 5% loss of stiffness. For 
structures of two damaged elements, one takes the first mode for both the 
undamaged and damaged structures, i.e., mb = md = (1), and the measurement 
locations include the damaged elements, then, one obtains the exact damage 
severity for all damage elements under the noise-free measurement condition.  
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Table 3:  Results of biased and random percentage errors of multiple-damage 
severity estimate on 5% modal noise level, using SMSE. 

Exercise Modes 

Structure D Structure E 
Element 18 Element 22 Element 22 Element 23 

b�  r�  b�  r�  b�  r�  b�  r�  

1 mb=md=1 6.61e7 2.25e3 2.95e3 6.31e3 1.04e5 6.98e3 2.52 189.32 
2 mb=md=2 173.43 1.39e3 2.13e3 1.92e3 1.56e3 5.63e3 1.68e6 5.29e3 
3 mb=md=3 191.99 1.03e4 360.57 2.75e4 317.62 1.06e4 2.89e3 6.96e3 
4 mb=md=4 1.62e3 2.39e4 12.57 440.36 5.05e5 1.47e4 311.00 9.97e3 
5 mb=md=5 252.19 747.89 554.25 1.46e3 6.38 168.60 1.06e3 2.14e3 
6 mb=md=(1~3) 10.88 98.00 26.66 366.90 5.72 22.29 2.19 54.86 
7 mb=md=(1~5) 6.62 10.60 7.47 15.62 0.11 4.47 0.20 5.28 

 
 

     The same multiple-damage scenarios investigated above with the 
contaminated mode shapes are considered. Modal noise level is 5%, and all 
simulated damages are with 5% stiffness loss. Throughout this study, 5000 
Monte Carlo simulations are always repeated for each case under investigation. 
One takes from the 1st to the 5th mode respectively, i.e., mb = md = (1, 2, …, or 

5). Table 3 provides the simulated results of b  and r  for the exercises. Then, 

the modes 1 ~ 3 or 1 ~ 5, i.e., mb = md = (1 ~ 3) or (1 ~ 5), were taken. Table 3 

provides the simulated results of b  and r  for the exercises too. Using 

multiple-modes for structures (D ~ E), the results of damage severity estimation 
are statistically better than single mode. From the results of these exercises, one 
observes that additional modes improve the reliability of the solution. Testing on 
structures having a damaged element at other substructures also yields the same 
conclusion. Due to the complicated mutual influence among multiple damaged 
members, modes associated with the modal noise effect on each damaged 
member are not easy to extract. The newly proposed method can accurately 
quantify the multiple damaged elements when the mode shapes are not 
contaminated. This method also can successfully quantify the damage severity 
based on the preset damage locations when the mode shapes are contaminated. 

4 Concluding remarks 

A newly developed non-iterative damage identification method, substructure 
modal strain energy (SMSE), which is capable of estimating for lattice core 
structures. In addition to its accuracy, the significant advantage over other modal 
energy methods is that the complete mode shape can be used directly. The 
method has the potential to be employed for plane structures as well. However, 
further development is still needed. Developing the SMSE method for plane 
structures is currently underway. 
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