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Abstract 

This study assesses the performance of several alternative methods for modeling 
dependence between random variables in the context of pricing an agricultural 
insurance contract with multiple underlying risk exposures. Simulation methods 
are used to estimate the sampling distribution of the insurance rates generated 
under alternative methods. The results indicate significant variability in 
performance across methods, and contribute to the risk analysis and insurance 
literatures by quantitatively assessing out-of-sample efficiency and bias trade-off 
among competing methods for modeling dependence in limited data scenarios.   
Keywords: copulas, GRP basis risk, crop insurance rating efficiency, kernel 
copula, Iman and Conover procedure, Phoon, Quek, and Huang procedure. 

1 Introduction 

Interest in the modeling of dependence structures and copulas in the fields of risk 
analysis, financial engineering, and actuarial mathematics has increased 
substantially in recent years. Copulas [1] offer a more flexible, wider set of tools 
for modeling dependence structures in probabilistic settings than do more 
conventional methods—such as Iman and Conover’s [2] (IC) or Phoon, Quek, 
and Huang’s [3] (PQH)—but tend to be more computationally intensive, less 
familiar to those in the field, and more difficult for end-users to implement.  
Moreover, in many fields little empirical work has actually been conducted to 
evaluate the performance of alternative copulas and dependence modeling 
methods in applied settings.  The practical importance of properly implementing 
these methods has increased as a result of the alleged misuse of certain 
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dependence modeling approaches and their role in the global financial crisis of 
2008-2009. There is, for example, much concern about correctly modeling 
systemic risk, which is the likelihood of massive and highly (positively) 
correlated losses in a system [4].  
     A particular domain where copulas have not yet been widely adopted but are 
of great interest is in the rating of insurance for agricultural production exposures 
[5, 6]. Accurate modeling of the dependence structure is particularly important in 
agriculture as these insurance covers are typically a function of several related 
risks.  For example, revenue insurance is a function of both output price and 
quantity of production, and has become the insurance product most widely 
adopted by farmers in the U.S. Crop Insurance program.  While some work in 
this area exists focusing on the bias in rates generated from alternative 
dependence structures, it is limited and far from comprehensive. Furthermore, to 
our knowledge, no work has been conducted assessing the out-of-sample 
efficiency of alternative dependence modeling methods in insurance contexts.  
Efficiency is particularly important in agricultural insurance applications since 
only a few years of data are generally available to the actuary who estimates 
rates.  Given that insurance ratemaking is primarily a forecasting exercise, 
assessment of out-of-sample efficiency is of critical importance [7].  Moreover, 
inefficient rating structures can undermine the integrity of the market through 
opportunistic behavior driven by asymmetry in information. 
     We evaluate the bias and efficiency of generated insurance rates under 
alternative dependence modeling methods and varying data constraints in an 
inherently out-of-sample framework. The application is to an insurance policy 
based on crop yields at different levels of aggregation.  Specifically, we evaluate 
a relatively new type of insurance product that indemnifies a producer if the 
latter’s individual yield is less than the yield of the county in which the producer 
is located.  A comprehensive side-by-side comparison of several dependence 
modeling methods—including the IC and PQH procedures, the Gaussian, 
Student’s-t, Frank, Clayton, and Gumbel parametric copulas, a non-parametric 
kernel copula, and a bootstrap empirical approach—is conducted in a simulation 
framework which allows for analysis of the estimated rate sampling distribution.  
To calibrate the simulations, this study employs a large and unique farm-level 
yield dataset from the Illinois Farm Business and Farm Management database, 
consisting of 48,568 farm-level yield observations from 1972-2007, as well as 
matched county-level yield data from the USDA National Agricultural Statistics 
Service.  The results contribute to the risk analysis and insurance literatures by 
quantitatively investigating the bias-efficiency tradeoff between competing 
methods for modeling dependence structures.  The findings shed light on 
important questions pertaining to method selection under a variety of data-
related constraints typically faced by actuaries and risk managers.  

2 The insurance environment 

The role of the insurer involves—among other things—pricing risks of potential 
insureds, as well as underwriting and bearing the risks of actual insureds.  The 
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process of pricing insurance, referred to as “insurance rating” or “ratemaking”, is 
addressed by the field of actuarial mathematics.  The rating process is crucial to 
the functioning of the insurance system as a whole.  To complicate matters, 
actuaries are typically faced with data constraints when determining rates, 
particularly in new markets.  Thus, it is important to have an understanding of 
how different dependence modeling methods perform in small samples in the 
context of not only expected rate biases, but also in terms of out-of-sample rating 
efficiency.   

2.1 Insurance policy explanation and motivation 

The insurance product employed in this application is a relatively new type of 
insurance product that insures the excess loss between the farm-level risk 
exposure and the county-level insurance product.  This product is motivated by 
the nature of the insurance market; in the U.S., a large government-subsidized 
crop insurance program exists.  One product available to producers, known as 
Group Risk Protection (GRP), is an insurance cover that indemnifies (i.e., pays 
the insured) based on the county yield.  From the producer’s perspective, GRP is 
likely to be effective in protecting against losses that are widespread—such as 
drought—however, they face a residual “basis” risk in the event that an isolated 
yield loss event occurs.  Thus, the basis risk insurance (BRI) product modeled 
here indemnifies the producer if the individual’s loss is greater than the loss 
payable on the county insurance product.   

2.2 Basis risk insurance indemnification structure 

The indemnity on the BRI is equal to the difference between the county 
insurance indemnity and the actual producer loss, in cases when the producer 
loss is greater than the county indemnity.  The county indemnity is:  

 
{ ( ) }C C C cI = Max 0, E Y  -Y Cov  , (1) 

where ( )CE Y  is the expected county yield set by the insurer (the insurance 

guarantee), CY  is the realized county yield, and CCov  is the coverage level 

elected (%) by the producer.  Thus, the insurance pays a positive amount 
whenever the realized yield is less than the guaranteed yield times the coverage 
level, and has a “disappearing deductible” since the indemnity will equal the 
total yield guarantee when the realized yield is zero. 
     The traditional producer-level yield insurance product also pays indemnities 
when realized yields are less than the yield guarantee, but has a slightly different 
structure in that it does not have a disappearing deductible.  Explicitly, the 
producer-level indemnity equals 

 { ( ) }F F F FI  Max 0, E Y ×Cov   Y  , (2) 

where ( )FE Y is the expected farm yield, FY  is the realized farm yield, and FCov  

is elected coverage level.  The BRI indemnity function is then  
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 { ,0}BRI F CI Max I I  . (3) 

     In practice, the insurer will attempt to observe BRII over a large number of 

cases with similar risk exposures to create an expectation of the cost of offering 
the insurance, setting the fair insurance rate R equal to expected indemnities.  If 
the joint distribution of producer and county yields is known, then  

 
( , )BRI F C F CR I f Y Y Y Y    . (4) 

     The insurer will typically divide by the size of the underlying exposure (i.e., 
the “liability”), and then estimate the expected value to derive the rate of 
expected cost per unit of liability.  In this study, the simulation will use 
exposures with common liability sizes, so we simply refer to it as the rate. 

3 Methods for modeling dependence structures 

The methods available for modeling dependence structures vary from parametric 
methods that produce spherical or non-spherical dependence structures, to non-
parametric kernel methods, to ad hoc methods of inducing correlation.  The 
agricultural insurance field has been dominated for many years by the use of ad 
hoc methods such as Iman and Conover’s [2] (IC) and more recently some have 
advocated using the Phoon, Quek, and Huang’s procedure [3] (PQH) [8, 9].  
Copulas, meanwhile, have received much less attention in agricultural insurance 
settings.   

3.1 The Iman and Conover procedure 

The IC procedure [2] is quite widely used in actuarial work and provides a very 
simple method of generating correlated random uniform variables. Moreover, it 
is—by actuarial standards and in most applications—very fast and easy to 
implement.  The IC procedure is essentially an ad hoc resorting procedure that 
uses a random sample of standard normal variates and the Cholesky 
decomposition of a desired rank correlation matrix to generate correlated 
standard normal random variates.  The correlated standard normal variates are 
then transformed into correlated random uniform variates via the normal 
distribution function.  The resulting correlated uniforms can then be used to 
generate correlated random variates with the desired marginal distributions via 
the inverse distribution method.  To implement the procedure, suppose we 
observe data for M variables for T periods, T MX   and let M M  be the estimated 

rank correlation matrix of T MX  .  The IC procedure can be employed to simulate 

N correlated random uniform variates for M variables with the desired rank 

correlation M M   as follows.  Letting N MZ 
 be a matrix of random 

(uncorrelated) standard normal variates and ( )M M M MY C   be the Cholesky 

decomposition of a matrix Y such that 'C C Y , we can obtain N M  correlated 
uniform random variates as 
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 (( ( ) ) )N MU Z      , (5) 

where ( )  is the standard normal cumulative distribution function (element-by-

element). 

3.2 Phoon, Quek, and Huang procedure 

The PQH procedure [3] is similar to the IC procedure in that it allows for 
simulation of correlated uniform random numbers with the desired rank 
correlation. Like the IC procedure, it is both easy to implement and 
computationally quite fast, but may be more effective at replicating the 
underlying correlation structure according to Coble et al. [8] and Anderson et al. 
[9].  The main insight of the PQH procedure is that a Gaussian process with zero 
mean and unit variance can be easily simulated with the eigenvalues and 
eigenfunctions of the covariance function along with a set of uncorrelated 
standard Gaussian variates by using the Karhunen–Loeve (K-L) expansion 
representation.  Below we provide a simple implementation of the PQH 
procedure as described by Anderson et al. [9] from Phoon et al. [3].  Letting

2sin(( / 6) )   be the converted Pearson correlation (where again  is the 

estimated rank correlation matrix of sample data X ), 1M  be a column vector of 

eigenvalues of  , M Mg  be a matrix with columns of eigenvectors of  , 

N MZ 
 be a matrix of random (uncorrelated) standard normal variates, and 1N  be 

a column vector of ones, N random draws of M correlated uniform variables can 
be generated using the K-L expansion as  

 ( )N M NU g Z       , (6) 

where again ( )  is the standard normal cumulative distribution function 

(element-by-element). 

3.3 Copulas 

Copulas allow for the modeling of dependence among marginal variables by 
directly modeling the joint distribution of standard marginal uniform random 
variables, where the standard marginal uniforms are the result of the probability 
integral transforms on the original marginal variables.  In actual simulation 
applications, the copula density is used to generate “correlated” uniform random 
variates for the variables to be simulated.  The resulting “correlated” uniform 
random variates are then used to generate simulated random variates according 
to the selected marginal distribution, using the inverse probability transform 
method.  Importantly, copulas do not restrict the underlying uniform marginal 
distributions to be linearly correlated, but indeed are very general and can model 
dependence of any type.  This is a very important aspect of copulas that separate 
them from ad hoc methods or more restrictive methods such as the IC or PQH 
procedures, which typically impose some form of linear or spherical correlation 
on the underlying uniform marginals.  This difference can be very important, 
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particularly in cases where tail dependence or other non-linearities in the 
covariance structure exist.   

3.3.1 Formal definition of Copula and Sklar’s theorem 
Formally, a copula distribution is a multivariate joint distribution with standard 

marginal uniform distributions, :[0,1] [0,1]MC  , such that ( ) 0C u if at least 

one element of [0,1]Mu equals zero, ( ) mC uu if [0,1]Mu has all elements 

equal to one except element mu , ( )C u is increasing in each element mu , and its 

volume ( ) 0CV B for every [0,1]Ma,b   with a b given hypercube [ ]B a,b

whose vertices lie in the domain of C  [10].  Sklar’s theorem states that for any 
multivariate distribution function, the marginal distributions (modeled via the 
univariate distribution functions) and the dependence structure (modeled via the 
copula) can be completely separated.  Formally, Sklar’s theorem states that for 
any M-dimensional distribution function F with marginal distributions

1 2, ,... MF F F , there exists an M-dimensional copula C such that 

 1 2 1 1 2 2( , ,..., ) ( ( ), ( ),..., ( ))M M MF x x x C F x F x F x . (7) 

     Sklar’s theorem has an important corollary that 

 1 1
1 2 1 1( ) ( , ,..., ) ( ( ),..., ( ))M M MC C u u u F F u F u  u ,  (8) 

where 1
mF  is the inverse distribution function and mu follows directly by the 

probability integral transform. Thus, Sklar’s theorem shows that copulas can be 
used to model the underlying dependence structure via the distribution of the 
probability integral transforms independently of the marginal distributions.  
Additionally, the use of copulas does not restrict the choice of the marginal 
distributions in any way.  Indeed, any combination of valid marginal 
distributions can be combined with any given copula, with each unique 
combination producing a unique multivariate distribution.  These features of 
copulas render them very flexible and powerful tools.   

3.3.2 Elliptical parametric copulas: Gaussian and Student’s-t 
The two elliptical parametric copulas assessed in this study are the Gaussian 
copula and the Student’s-t copula, which are derived from Sklar’s theorem.  
Accordingly, the Gaussian copula density is defined as 

 
1 1 1

1 2 1 2( , ,..., ) ( ( ), ( ),..., ( ))Gauss
M MC u u u u u u     ρ ρΦ , (9) 

where ( )ρΦ is the standard multivariate normal distribution with Pearson 

correlation matrix ρ and 1( )  is the inverse of the standard normal cumulative 

distribution function.  Similarly, the Student’s-t copula is defined as 

 
'

1 2( , ,..., )Student s t
MC u u uρ

1 1 1
, 1 2( ( ), ( ),..., ( ))v v v v MT t u t u t u   ρ , (10) 

where , ( )vT ρ is the standard multivariate Student’s-t distribution with Pearson 

correlation matrix ρ and degrees of freedom v, 1( )vt
  is the inverse of the 

standard Student’s-t cumulative distribution function.   
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3.3.3 Archimedean parametric copulas: Frank, Clayton, and Gumbel 
Archimedean copulas are a relatively flexible class of copulas that can 
adequately model a wide range of alternative dependence structures, and most 
have analytical solutions.  Following London [10], a simple m-dimensional 
Archimedean copula can take the form  

 

1
1 2

1

( , ,..., ) ( )
M

M m
m

C u u u u 



 
   

 
 , (11) 

where :[0,1] [0, )   is a continuous, strictly decreasing function such that

(0)   , (1) 0  , and its inverse 
1

is completely monotone on[0, ) .  The 

Gumbel copula is defined by letting ( ) ( ln )t t    with 0  . 

      The Clayton copula is defined by letting ( ) ( 1) /t t    with 0  . 

     Last, the Frank copula is defined by letting 
1

( ) ln
1

te
t

e









 


with

\{0}  . 

3.3.4 Non-parametric kernel copula 
The kernel copula density is estimated as a multivariate kernel density of 
uniformly distributed marginals, T MU  , from the probability integral transform 

of the original data, T MX  , using the empirical distribution.  Since the copula has 

limited support, [0,1]M , the kernel density is truncated using the reflection 

method.  Assuming a product kernel and diagonal bandwidth, the kernel copula 
density can be written as  

1 2ˆ( , ,..., )Mc u u u 

 
, , ,

1 1 1

ˆ ˆ ˆ21
,

...

MT
m t m m t m m t m

m m m
M m m mt m

u u u u u u
K K K

Th h h h h 

         
       

       


 

(12) 

where , ,ˆ ( )t m m t mu F X is the empirical distribution of variable m [11]. The copula 

density can then be calculated as the integral of the copula density as  

 0
1 2

1 1 1 0

1ˆ ( , ,..., )
...

muMT

M m m m m
M t m

C u u u K K K dv
Th h

 

 

      . (13) 

     This form has several desirable properties, namely that the marginal copula of 
a subset of M variables can be estimated using only the observations along the 
dimensions of interest.  The result is that adding additional variables to the set 
involves only a linear increase in the number of computations required to invert 
each condition marginal copula when sampling from the density. 

      This study uses a Gaussian product kernel and uses the new bandwidth 
estimator of Botev et al. [12] (BGK).  The BGK bandwidth estimator is a non-
parametric plug-in approach that involves neither numerical integration nor the 
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normal reference rules that tend to adversely affect other plug-in methods.  The 
BGK bandwidth method was found to perform quite well in terms of both speed 
and ability to accurately regenerate the underlying data compared to several 
other bandwidth estimators. 

3.3.5 Calibration and simulation of copulas 
The parametric copulas are calibrated using the Canonical Maximum Likelihood 
method (CML).  The CML method uses the empirical distribution for each of the 
M variables to convert observed data T MX   into uniform variates, ,ˆm tu .  The 

copula parameter vector, α , is then estimated as 

 
1, 2, ,

1

ˆ ˆ ˆ ˆarg max ln ( , ,... ; )
T

CML t t M t
t

c u u u


 
α

α α .  (14) 

     For the elliptical copulas, random draws from the copula can be generated by 
simply simulating random variates from the standard multivariate distributions 
with the estimated correlation matrix (and degrees of freedom for the Student’s-
t), and then transforming to uniform marginals using the standard distribution 

function.  That is, letting N MQ 
 be a matrix of random standard variates 

(Gaussian or Student’s-t) with calibrated parameters ˆ CMLα , N random draws of M 

correlated uniform variables can be computed simply as 

 ( )ParamCop
N MN MU F Q    , (15) 

where F is the standard distribution function (element-by-element). 
     The Archimedean copulas can be simulated by first generating independent 
standard uniform variates, and then inverting the conditional copula density with 
the proper parameters to generate random draws.  Kernel copulas can be 
simulated in the same way with the exception that there are no parameters to 

estimate.  That is, to generate N random draws, ,KCop ArchCop
N MU 
  from an M-

dimensional from kernel copula or Archimedean copulas, first generate M 

independent vectors of N random standard uniform variates, N MU  , and set the 

first m-vector of 1 1U U . Next, for m=2,…, M, set 1
1 1( | ,..., )m m m mU C U U U

  

by solving for mU using the root-finding equation  

 1 1( | ,..., ) 0m m m mU C U U U       (16) 

for each element of 1, ,[ ,..., ]m m N mU U U    , [13, pg. 184].  The simulated draws 

are thus 

 
,

1 2[ , ,..., ]KCop ArchCop
MN MU U U U     . (17)

 
     The Frank and Clayton copulas have analytical inverses, so solving the root 
finding equation is not necessary.  The Gumbel, on the other hand, can be 
inverted numerically.  The Gaussian product kernel used for the kernel copula in 
this study has an analytical conditional distribution (as do many other kernels), 
although evaluating the inverse remains computationally intensive because at 

 
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

PI-236  Risk Analysis VII



each draw the conditional kernel density must be evaluated several times when 
solving the root finding equation (eqn. 16). 

4 Rate simulation procedure 

The simulation employs a Monte Carlo bootstrap resampling procedure to 
estimate the sampling distribution of the normalized rates under each of the 
alternative dependence modeling methods.  For every combination of 

{10,30,50}T   and {25,50,75,100,200}F   (i.e., 15 combinations), J=1,000 

bootstrapped yield samples,
 

( )( )i Boot
T F M

Y
  
  consisting of T F  matched county and 

farm yields, are drawn with replacement from the master dataset of county and 
farm yields, 

tT F MY    where {1,2,..., }t T are the years represented in the 

dataset, {1,2,..., }t tf F is the number of farms in the dataset for each year t, 

{ , }m Farm County  so that M=2, F is the number of farm yields sampled in 

every year, andT is the number of years to sample at each iteration i.  In order to 
accurately retain the impact of catastrophic weather events in the sampling 

distribution when constructing ( )( )i BootY , first a random sample TS of sizeT  

years are drawn with replacement from the T  available years of data in Y .  

Next, for each sampled year Ts S  , a random sample ,F sS of size F  matched 

farm and county yields are then drawn with replacement from T sY  .  The ,F sS

samples are then stacked for all Ts S  to construct ( )( )i BootY . 

     Marginal uniforms
 

( )( )i Boot
T F M

U
  

  are then estimated via the probability integral 

transform using the empirical distribution of ( )( )i BootY , and the insurance 

guarantee is set equal to the sample average of the bootstrapped yield series.  
Next, each of the dependence modeling methods, { , , ,IC PQH Kernel   

, , , , }Gauss t Frank Clayton Gumbel is fitted to the sample ( )( )i BootY , and a random 

sample of size N=5,000 Monte Carlo draws of matched county and farm 

correlated pseudo-random uniform variates, ( )( )i
N MU 


 , are then simulated.  In order 

to isolate the comparison and impacts across dependence modeling methods, we 
use the empirical distributions for the marginals when simulating yields.  Thus, 

the marginal empirical distributions for farm and county yields from ( )( )i BootY are 

estimated and then inverted to recover correlated random draws of farm and 

county yields, ( )( )i
N MY 

 , using the inverse transformation method (this is repeated 

for each dependence modeling method).  ( )( )iY  is used to calculate simulated 

indemnities, ( )( )
( ) 1

i
Basis NI 


 , and rates

 
( )( )iR   as defined in eq. (1), for every 
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coverage level combinations in {65%,70%,75%,80%,FarmCov   85%,90%}

and {65%,70%,75%,80%,85%,90%}CountyCov  , and for every combinations 

of T  and F .  Finally, ( )( )iR  i I   are aggregated to estimate the sampling 

distribution of ( )R  .  The mean and the standard deviation of ( )R  are reported 
for each combination defined above.  Rates are also calculated from the 
bootstrapped sample at all iterations.  The empirical [ ]E R is calculated from the 

original dataset of 48,586 matched yield observations, and is employed as the 
baseline rate. 
     Simulations are conducted in MATLAB using the Parallel Computing 
Toolbox.  The IC and PQH procedures as well as the Kernel Copula Monte Carlo 
simulators were programmed in MATLAB by the authors.  The parametric 
copulas are implemented using the MATLAB Statistics Toolbox.   

4.1 Data used for simulation calibration 

A large farm-level yield dataset from the Illinois Farm Business and Farm 
Management database consisting of 48,568 farm yield observations from 1972-
2007—as well as matched county-level yield data from the USDA National 
Agricultural Statistics Service—are used to calibrate the simulations.  All farm 
data were collected from a group of 27 counties in central Illinois with similar 
risk, soil, and climactic characteristics.  Farms were only selected if they 
contained at least 15 years of data.  A feature of agricultural crop yields in this 
region is that they tend to increase through time due to technological change, 
improvements in seed biotechnology, and better management practices.  Thus, 
before working with yields it is common to detrend the data [15].   
     A robust Iterative Reweighted Least Squares Huber M-Estimator is employed 
to estimate trend [14].  The use of robust estimators has gained some popularity 
in these applications [15], and thus we adopt them here.  Using the trend 

estimate, the trend yield is obtained 1 2
ˆ ˆTr

i iY t   , where 2̂  is the trend yield 

in year it .  The detrended yield is thus estimated as det
2

ˆ( )i i iY Y T t    .  To 

reduce sampling variability of the farm-level trend estimates, the county level 
trend is applied when detrending the farm-level yields.  Lastly, to account for 
differences in the expected yields of each farm and county the data are mean-
adjusted such that the resulting detrended means are equivalent for all farms and 
counties, respectively.   

5 Results  

Table 1 presents estimated mean rate results by coverage level, and provides a 
snapshot or rating bias across methods.  Compared to the baseline rate, the 
bootstrap (i.e., empirical copula), Kernel copula, Clayton, and t-copula all 
performed well in terms of bias, although the Clayton tended to be biased 
downward, while the Kernel and t tended to be biased upward.  The IC and PQH  
 

 
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

PI-238  Risk Analysis VII



Table 1:  Mean rate ( )E R by coverage level combination. 

 

 
 
 

 

Figure 1: Rate distributions ( F =100, T =30), CovC=90%, CovF=90%. 
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Figure 2: Rate distributions, F =100, T =30, CovC=90%, CovF=75%. 

tended to perform most poorly, overestimating the rate by over 50% for the 
90%/90% coverage product, and by over 350% for the 90%/65% product.   
     To assess out-of-sample rate efficiency we evaluate the distribution of rates 
under each method.  Figures 1 and 2 present rate distributions for five selected 
methods, and Table 2 presents rate standard deviations for several coverage 
levels.  The rate distributions in Figures 1 and 2 can be interpreted as the 
distribution of the rates an insurer would estimate under adoption of a given 
dependence modeling method given the bootstrapped/sampled data they observe; 
or, as the distribution of indemnities paid by the insurer over a given horizon for 
the specified portfolio of insurance.  At low coverage level combinations, the 
rates tend to be highly volatile across methods, and IC and PQH tend to perform 
much worse than the other candidate methods.  For example, Figure 1 illustrates 
that not only do the PQH and IC perform nearly identical, but are also the most 
biased and inefficient (90%/90% coverage), and Figure 2 shows that their 
performance relative to the other methods deteriorates substantially as the 
coverage level decreases (90%/75%).  The Kernel, Bootstrap, t, and Clayton all 
tended to perform quite well in terms of efficiency, although at low coverage 
levels the Clayton tended to generate unacceptably low rates (Figure 2).  
Interestingly, the Bootstrap/empirical copula tended to perform best overall in 
terms of both bias and efficiency, regardless of coverage level. 
     The sampling procedure also allows for assessment of increases in rate 
efficiency as more farms or more years of data are observed by the insurer, with 
the results suggesting that having more years of data is preferred relative to 
having more farms in each year. The reason for this finding is that farm yields 
can be highly correlated in any given year due to spatial correlation in weather, 
resulting in only minimal additional information from the addition of more 
observations in a given year. For example, referring to the Kernel copula rate  
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efficiency results for the in Table 2, the rate standard deviation when sampling 
10 years and 200 farms (0.365) is substantially higher than when sampling 30 
years and 25 farms (0.305), even though in the latter case fewer actual yields are 
sampled overall (2000 vs. 750).  Furthermore, the marginal value of adding more 
farms in a given year appears to diminish quickly in the farm sampling size. For 
example, the efficiency gains in Table 2 are high as the number of sampled farms 
goes from 25 to 50 when sampling 10 years, (0.462 to 0.394 for the Bootstrapped 
rate), but only small efficiency gains are realized when going from 50 to 200 
farms (0.394 to 0.359).   

6 Conclusion 

This study assessed the performance of several alternative methods for modeling 
dependence between random variables in the context of pricing an agricultural 
insurance contract with multiple underlying risk exposures.   Simulation 
techniques were used to estimate the sampling distribution of the insurance rates 
generated under each method in order to assess the bias and efficiency of the 
rating structures implied by each method.  Simulations were also conducted 
across several different resampling sizes to investigate the effect of data 
availability on rating efficiency. For this particular application, we find that the 
bootstrapping method, kernel copula, and Clayton copula all perform quite well 
given the structure of the data, but that the Clayton copula often generated rates 
that were unacceptably low.  The Frank and Gumbel copulas tended to 
underestimate the tail dependence and produce somewhat biased and inefficient 
ratings for this product.  The PQH and IC procedures performed similarly and 
very poorly.  Indeed, they produced the most biased and inefficient results.   
     These results have several implications for insurance rating and risk analysis, 
and contribute to the literature by quantitatively assessing the bias and out-of-
sample efficiency among several competing methods for modeling dependence 
structures.  A better understanding of these bias and efficiency characteristics in 
empirical settings is useful for researchers, actuaries, and risk managers working 
on a range of insurance problems, particularly when data are limited.  They 
highlight the importance of the dependence modeling technique chosen by the 
practitioner, point out the restrictive nature of parametric copulas, and illustrate 
some of the benefits of the kernel copula.  This study also calls into question the 
results of recent studies by Anderson et al. [9] and Coble et al. [8] which purport 
to find significant differences in the performance of the PQH and IC procedures 
in the context of rating revenue and whole farm-insurance products, and which 
recommend that the RMA-USDA convert their systems to use the PQH instead 
of IC.  We find that there is no significant difference between PQH and IC in this 
application, and also find no reason to expect that this would not be the case of 
rating revenue products.  Nevertheless, additional work is needed to assess 
revenue product rating in comprehensive manner similar to that employed here.  
Furthermore, our results suggest that even compared to copulas with similar 
shape characteristics, the PQH and IC procedures perform much worse in terms 
of out-of-sample efficiency.  This has important implications for the U.S. Federal 
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Crop Insurance program given its reliance on the IC method for rating revenue 
insurance. 
     Further research is needed to assess the performance of these and other 
methods in related contexts.  For example, there also exist revenue insurance 
product analogs to the yield-only basis risk insurance product investigated in this 
study.  Future work could also extend the simulation techniques employed to 
estimate the evolution of the insurance market and underwriting performance 
with uncertain rates under alternative methods.   

References 

[1] Nelsen, R.B., An Introduction to Copulas, Springer: Berlin and NY, 2006. 
[2] Iman, R.L., Conover, W.J., A distribution-free approach to inducing rank 

correlation among input variables. Communication in Statistics-Simulation 
and Computation, 11(3), pp. 311-334, January, 1982. 

[3] Phoon, K., Quek, S.T., and Huang, H., Simulation of non-Gaussian 
processes using fractile correlation. Probabilistic Engineering Mechanics, 
19, pp. 287-292, 2004. 

[4] Kaufman, G.G. and Scott, K.E., What is systemic risk, and do bank 
regulators retard or contribute to it? The Independent Review, 7(3), pp. 371-
91, 2003. 

[5] Vedenov, D., Application of copulas to estimation of joint crop yield 
distributions, American Agricultural Economics Association Annual 
Meeting, Orlando, FL, July 27-29, 2008. 

[6] Zhu, Y., Ghosh, S.K., and Goodwin B.K., Modeling dependence in the 
design of whole farm insurance contract: A copula-based model approach. 
American Agricultural Economics Association Annual Meeting, Orlando, 
FL, July 27-29, 2008. 

[7] Norwood, B., Roberts, M., and Lusk, J., Ranking crop yield models using 
out-of-sample likelihood functions, American Journal of Agricultural 
Economics, 86(4): pp. 1021-1043, 2004. 

[8] Coble K.H., Harri A., Anderson, J.D., Ker, A.P., Goodwin, B.J., USDA 
Risk Management Agency Review of County Yield Trending Procedures 
and Related Topics, February 18, 2008.  

[9] Anderson, J.D., Harri, A., and Coble, K.H., Techniques for multivariate 
simulation from mixed marginal distributions with application to whole-
farm revenue simulation.  Journal of Agricultural and Resource Economics, 
34(1), pp. 53-67, 2009. 

[10] London, J., Modeling Derivatives Applications in Matlab, C++, and Excel, 
Monte Carlo and New York, p. 69, 2006. 

[11] Charpentier, A., Fermanian, J.D., and Scaillet, O., The Estimation of 
Copulas: Theory and Practice, Rank, J. (ed). Risk Books: London, 2007. 

[12] Botev, Z.I., Grotowski, J.F., and Kroese, D.P., Kernel density estimation 
via diffusion. Annals of Statistics. Accepted for publication, 2010. 

[13] Cherubini, U., Luciano, E., and Vecchiato, W., Copula Methods in 
Finance, Wiley Finance Series, John Wiley & Sons: Hoboken, NJ, 2004.  

 
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

Risk Analysis VII  PI-243



[14] Fabozzi, F.J., Kolm, P.N., Pachamanova, D., Robust Portfolio Optimization 
and Management, The Frank J. Fabozzi Series, John Wiley and Sons, Inc.:   
Hoboken, New Jersey, June 2007. 

[15] Ramirez, O.A., Misra, S.K., and Nelson, J., Efficient estimation of 
agricultural time series models with nonnormal dependent variables. 
American Journal of Agricultural Economics, 85(12), pp.1029-1040, 
November 2003. 

 
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

PI-244  Risk Analysis VII




