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Abstract 

In a previous paper we applied a sequential life testing approach to a low  
alloy-high strength steel part used in highway overpasses in Brazil. The data was 
collected over a period of a few years with the steel parts working under normal 
use conditions. In this paper we decided to use a combined approach of 
accelerated life testing with sequential life testing to verify if the test results 
obtained under accelerated conditions could be translated to the results verified 
under normal use conditions with a certain degree of accuracy. To accomplish 
this we will apply the “Maxwell Distribution Law”. We elected as sampling 
distribution the three-parameter Weibull model. To estimate the three parameters 
of the Weibull underlying sampling distribution we will use a maximum 
likelihood approach for censored failure data. We will be assuming a linear 
acceleration condition. To evaluate the accuracy (significance) of the parameter 
values obtained under normal conditions for the underlying three-parameter 
Weibull model we will apply to the expected normal failure times sequential life 
testing using a truncation mechanism developed previously by De Souza. An 
example will illustrate the application of this procedure. 
Keywords: three-parameter Weibull model, low allot-high strength steel parts, 
sequential life testing, maximum likelihood approach. 
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1 Introduction 

The sequential life testing approach with a truncation mechanism is an attractive 
alternative to that of predetermined, fixed sample size hypothesis testing because 
of the fewer observations required for its use, especially when the underlying 
sampling distribution is the three-parameter Weibull model. However, it happens 
that sometimes the amount of time available for testing could be considerably 
less than the expected lifetime of the component. To overcome such a problem, 
there is the accelerated life-testing alternative aimed at forcing components to 
fail by testing them at much higher-than-intended application conditions. To go 
from the failure rate obtained at high stress to what a product or service is likely 
to experience at much lower stress, under use conditions, we will need additional 
modeling. These models are known as acceleration models. One possible way to 
translate test results obtained under accelerated conditions to normal using 
conditions could be through the application of the “Maxwell Distribution Law.” 
The three-parameter Weibull distribution has a shape parameter  that specifies 
the shape of the distribution, a scale parameter  that represents the characteristic 
life of the distribution and a location or minimum life parameter φ, representing 
the minimum life of the component or part being analyzed. Its density function is 
given by: 
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2 The acceleration condition 

The “Maxwell Distribution Law” is given by the following equation: 

 TEM  = totM × KTEe  (2) 

     This law expresses the distribution of kinetic energies of molecules. In eqn 
(2), MTE represents the number of molecules at a particular absolute Kelvin 
temperature T (Kelvin = 273.16 plus the temperature in Centigrade), that passes 
a kinetic energy greater than E among the total number of molecules present, 
Mtot; E is the energy of activation of the reaction and K represents the gas 
constant (1.986 calories per mole). Eqn (2) expresses the probability of a 
molecule having energy in excess of E. The development of the equations 
associated with the “Maxwell Distribution Law” can be found in De Souza [2}. 
These equations are: 
     Acceleration factor AF2/1 at two different stress temperatures, T2 and T1: 
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Term E/K: 
K

E
 = 

 











21

1/2

T

1

T

1

AFln
 (4) 

     Acceleration factor AF2/n to be applied at the normal stress temperature: 
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     Acceleration factor AFθ for the scale parameter θ: 

 AFθ = 
a

n
θ
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 (6) 

     Acceleration factor AF  for the minimum life φ: 

 AF = 
a

n
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φ
 (7) 

     According to De Souza [3], for the three-parameter Weibull model the 
cumulative distribution function at normal testing condition Fn(tnn) for a 
certain testing time t = tn, will be given by: 
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     Eqn 8 tells us that, under a linear acceleration assumption, if the life 
distribution at one stress level is Weibull, the life distribution at any other stress 
level is also a Weibull model. The shape parameter remains the same while the 
accelerated scale parameter and the accelerated minimum life are multiplied by 
the acceleration factor. The equal shape parameter is a necessary mathematical 
consequence to the other two assumptions; assuming a linear acceleration model 
and a Weibull sampling distribution. If different stress levels yield data with very 
different shape parameters, then either the Weibull sampling distribution is the 
wrong model for the data or we do not have a linear acceleration condition. 

3 Hypothesis tenting situations 

The hypothesis testing situations were given by De Souza [2]. For the three-
parameter Weibull model we will have: 
     1.   For the scale parameter :  H0:  θ ≥ θ0;      H1: θ < θ0 
     The probability of accepting H0 will be set at (1-) if  = 0. If  = 1 where 
1 < 0, the probability of accepting H0 will be set at a low level . 
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     2.   For the shape parameter :  H0: β ≥ β0;      H1: β < β0 
     The probability of accepting H0 will be set at (1-) if  = 0. If  = 1 where 
1 < 0, the probability of accepting H0 will also be set at a low level .  
     3.   For the minimum life parameter :  H0: φ ≥ φ0;      H1: φ < φ0 
     Again, the probability of accepting H0 will be set at (1-) if  = 0. Now, if 
we have  = 1 where  < 0, then the probability of accepting H0 will be once 
more set at a low level .  

4 Sequential testing 

The development of a sequential testing for the three-parameter Weibull model 
can be found in De Souza [3]. These equations are: 

 




















0

0
0

1
1

1

β

θ

θ

β
lnn

β

β
  

 




 

α

γ1
ln < iX  < 




















0

0
0

1
1

1

β

θ

θ

β
lnn

β

β
 + 

 







 
γ

α1
ln  (9) 

 iX  =
   


 




















n

1i
ββ 0
0

0β

0i

1
1

1β

1i

θ

φt

θ

φt
  1β

1
    




n

1i
1i

φtln , 

 +  1β
0
  




n

1i
0i

φtln  (10) 

5 Expected sample size of a sequential testing –  
truncation point 

The development of the equations for the expected sample size of a sequential 
testing for truncation purpose of a three-parameter Weibull sampling distribution 
can be found in De Souza [3] and [4]. These equations are: 
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6 Maximum likelihood estimation for the Weibull model for 
censored type II data (failure censored) 

The development of the equations for the maximum likelihood estimator for the 
shape, scale and minimum life parameters of a Weibull sampling distribution for 
censored Type II data (failure censored) can be found in De Souza [3] and [4]. 
These equations are: 
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     Eqns (13) and (14) must be solved iteratively. The existence of solutions to 
the above set of eqns (13) and (14) has been frequently addressed by researchers 
as there can be more than one solution or none at all; see Zanakis and Kyparisis 
[5]. 
     The standard maximum likelihood method for estimating the parameters of 
the three-parameter Weibull model can have problems since the regularity 
conditions are not met, see Zanakis and Kyparisis [5], Murthy, et al. [6] and 
Blischke [7]. To overcome this regularity problem, one of the approaches 
proposed by Cohen et al. [8] is to replace eqn (14) with the equation  
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     Here, t1 is the first order statistic in a sample of size n. The complete solution 
of eqn (16) can be found in De Souza [3] and [4]. 
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Table 1:  Failure times (cycles) of steel parts tested under accelerated 
temperature conditions (480 K). 

625,536 772,353 815,092 
876,137 922,869 991,378 

1,050,475 1,117,513 1,254,973 

Table 2:  Failure times (cycles) of steel parts tested under accelerated 
temperature conditions (520 K). 

532,371 657,322 693,695 
745,648 785,421 843,726 
894,021 951,075 1,068,062 

7 Example 

We are trying to determine the values of the shape, scale and minimum life 
parameters of an underlying three-parameter Weibull model, representing the life 
cycle of a new low alloy-high strength steel part. Once a life curve for this steel 
part is determined, we will be able to verify using sequential life testing, if new 
units produced will have the necessary required characteristics. It happens that 
the amount of time available for testing is considerably less than the expected 
lifetime of the component. So, we will have to rely on an accelerated life testing 
procedure to obtain failure times used on the parameters estimation procedure. 
The steel part has a normal operating temperature of 296 K (about 23 degrees 
Centigrade). Under stress testing at 480 K, 12 steel parts were subjected to 
testing, with the testing being truncated at the moment of occurrence of the ninth 
failure. Table 1 shows these failure time data (cycles).  
     Now, under stress testing at 520 K, 12 steel parts were again subjected to 
testing, with the testing being truncated at the moment of occurrence of the ninth 
failure. Table 2 shows these failure time data (cycles). 
     Using the maximum likelihood estimator approach for the shape parameter ; 
for the scale parameter θ and for the minimum life  of the Weibull model for 
censored Type II data (failure censored), we obtain the following values for these 
three parameters under accelerated conditions of testing: 

At 480 K. 1 = n =  = 3.28; θ1 = 997,891 cycles; 1 = 183,099 cycles 

At 520 K. 2 = n =  = 3.21; θ2 = 849,269 cycles; 2 = 155,259 cycles 

     The shape parameter did not change with  ≈ 3.25. The acceleration factor for 
the scale parameter AFθ2/1 will be given by: 

12θAF  = θ1/θ2 = 997,891/849,269 
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     Using eqn (4), we can estimate the term E/K: 
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     Using now eqn (5), the acceleration factor for the scale parameter to be 
applied at the normal stress temperature AFθ2/n, will be: 

n/2AF  = 





















2n T

1

T

1

K

E
exp  = 














 

520

1

296

1
3.006,1exp  = 4.32 

     Therefore, the scale parameter of the steel part at normal operating 
temperatures is estimated to be: 

nθ = n/2AF × θ2 = 4.32 × 849,269 = 3,668,842 cycles 

     The acceleration factor for the minimum life parameter AFφ2/1 will be given 
by: 
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     Again applying eqn (4), we can again estimate the term E/K. Then: 
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     Using once more eqn (5), the acceleration factor for the minimum life 
parameter, to be applied at the normal stress temperature AFφ2/n, will be: 
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     Then, as we expected, AFθ = 4.32 ≈AF = 4.47 ≈ AF = 4.4. Finally, the 
minimum life parameter of the component at normal operating temperature is 
estimated to be: 

nφ  = 
n2

φAF  × 2 = 4.4 × 155,259 = 683,140 cycles 

     Then, the steel part life when operating at normal use conditions could be 
represented by a three-parameter Weibull model having a shape parameter β of 
3.25; a scale parameter θ of 3,668,842 cycles and a minimum life φ of 683,140 
cycles. To evaluate the accuracy (significance) of the three-parameter values 
obtained under normal conditions for the underlying Weibull model we will 
apply, to the expected normal failure times, a sequential life testing using a 
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truncation mechanism developed by De Souza [3] and [4]. These expected 
normal failure times will be acquired by multiplying the nine failure times 
obtained under accelerated testing conditions at 520 K given by Table 2 by the 
accelerating factor AF of 4.4. It was decided that the value of  was 0.05 and  
was 0.10. In this example, the following values for the alternative and null 
parameters were chosen: alternative scale parameter 1 = 3,700,000 cycles, 
alternative shape parameter 1 = 2.9 and alternative location parameter 1 = 
700,000 cycles; null scale parameter 0 = 3,300,000 cycles, null shape parameter 
0 = 3.3 and null minimum life parameter 0 = 550,000 cycles. Now electing 
P(,,) to be 0.01, we can calculate the expected sample size E(n) of this 
sequential life testing under analysis. Using now equation (12) and eqn (11), the 
expression for the expected sample size of the sequential life testing for 
truncation purpose E(n), we will have  wE  = 0.325.  

Now, with P(θ, β, φ) = 0.01;  Bln  = 
 





 

α

γ1
ln  = 

 




 

05.0

10.01
ln  = 2.8904, 

and also with  Aln  = 







 α1

γ
ln  = 








 05.01

10.0
ln = 2.2513, we will have:  

        Blnβ,θP1Alnβ,θP    = 8904.299.02513.201.0   = 2.8390 

Finally:  nE  = 
325.0

8390.2
 = 8.73 ≈ 9 items 

     So, we could make a decision about accepting or rejecting the null hypothesis 
H0 after the analysis of observation number 9. Using eqns (9) and (10) and the 
nine failure times obtained under accelerated conditions at 520 K given by Table 
2, multiplied by the accelerating factor AF of 4.4, we calculate the sequential life 
testing limits. Table 3 shows these expected failure time data (cycles). 
     Figure 1 shows the sequential life-testing for the three-parameter Weibull 
model. 
     A line is drawn through the origin of the graph parallel to the accept and 
reject lines. The decision to accept or reject H0 simply depends on which side of 
the line the final outcome lays. Obviously this procedure changes the levels of  
and  of the original test; however, the change is slight if the truncation point is 
not too small [9]. As we can see in Figure 1, the null hypothesis H0 should be 
accepted since the final observation (observation number 9) lies on the side of 
the line related to the acceptance of H0.  
 

Table 3:  Failure times (cycles) of steel parts tested under normal 
temperature conditions (296 K). 

2,342,432 2,892,217 3,052,258 
3,280,851 3,455,852 3,712,394
3,933,692 4,184,730 4,699,473
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Figure 1: A truncation procedure for the sequential testing – three-parameter 
Weibull model. 

8 Conclusions 

In this work we life-tested a new industrial product using an accelerated 
mechanism. We assumed a linear acceleration condition. To estimate the 
parameters of the three-parameter Weibull model we used a maximum likelihood 
approach for censored failure data, since the life-testing will be terminated at the 
moment the truncation point is reached. The shape parameter remained the same 
while the accelerated scale parameter and the accelerated minimum life 
parameter were multiplied by the acceleration factor. The equal shape parameter 
is a necessary mathematical consequence of the other two assumptions; that is, 
assuming a linear acceleration model and a three-parameter Weibull sampling 
distribution. If different stress levels yield data with very different shape 
parameters, then either the three-parameter Weibull sampling distribution is the 
wrong model for the data or we do not have a linear acceleration condition. In 
order to translate test results obtained under accelerated conditions to normal 
using conditions we applied some reasoning given by the “Maxwell Distribution 
Law.” To evaluate the accuracy (significance) of the three-parameter values 
estimated under normal conditions for the underlying Weibull model we 
employed, to the expected normal failure times, a sequential life testing using a 
truncation mechanism developed by De Souza [3, 4]. These expected normal 
failure times were acquired by multiplying the nine failure times obtained under 
accelerated testing conditions at 520 K given by Table II, by the accelerating 
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factor AF of 4.4. Without using the truncation mechanism developed in this 
work, we were not able to reach a decision about accepting or rejecting a null 
hypothesis H0 after obtaining 9 observations. Applying the developed truncation 
mechanism, the decision of accepting the null hypothesis was reached with the 
analysis of only these 9 observations or items. This fact shows the advantage of 
using such a truncation mechanism in a sequential life test approach. 
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