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Abstract 
The purpose of this paper was to compare the goodness-of-fit for several 
parametric and kernal-based distributions to determine which distribution would 
perform well for simulating continuous random input variables whose underlying 
distributions were unknown. A Monte Carlo simulation procedure was 
developed to estimate how well some proxy distributions performed at 
approximating the distributions of random input variables. We conclude that 
without any a priori information on which to pick a probability distribution, the 
distribution for simulating a random input variable with limited specifications 
was a Parzen kernal distribution.  
Keywords: probability distribution selection, kernal distributions, simulation, 
Simetar©. 

1 What is the best probability distribution to simulate 
random input variables? 

Risk analysts who use Monte Carlo simulation techniques must specify (or 
assume) a probability density function (PDF) for each random input variable in 
their models. The question of which PDF (normal, beta, gamma, Weibull, etc.) 
should be used is often suggested by familiarity with the data generation process 
or the type of problem being analyzed (Law and Kelton [1, pp. 155-216]). 
Alternatively, some researchers simply assume the random input variables 
follow a normal distribution due to the ease of parameter estimation for this 
distribution and rely on the Central Limit Theorem as a justification. Another 
option is to estimate parameters for several proxy parametric distributions and 
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select the distribution that has the “best” goodness-of-fit test statistic comparing 
a simulated distribution to the historical data (Palisade Corp [2]). This procedure 
is most appropriate when there are many independent and identically distributed 
(i.i.d.) observations in the data and the proxy distributions have the same or 
similar characteristics and support evidenced empirically by the data. However, 
it is often the case that there are few historical observations and therefore there 
exists a need to use a procedure that is reasonable in these circumstances.   
     An alternative is to use a kernal density function (KDF) to fit a distribution to 
the available observations (Parzen [3]; Silverman [4]; Chen [5]). Kernal density 
procedures provide flexible means to both approximate the unknown underlying 
distribution as well as accommodate the multi-modality that often accompanies 
sparse data. Silverman assesses that these procedures are sound but 
computationally beyond the capabilities of many analysts. There is extensive 
literature on kernal methods and the associated bandwidth selection; it is not the 
intent of this study to contribute to those discussions but to evaluate some of the 
more common methods under some basic specifications. 
     The purpose of this paper is to approximate the underlying distribution for 
random input variables using both parametric and kernal density functions for 
small samples with particular specified properties. The types of random variables 
presented have finite means and variances and are non-negative, such as price or 
production variables. A sample of 10 observations is used to represent the size of 
data sets often available with annual production variables of this type. 

2 Methodology 

A Monte Carlo simulation procedure was developed to estimate distribution 
functions and then systematically sample from them to determine which of the 
proxy distributions performed most favorably. The simulation experiment was 
programmed in a spreadsheet using the Simetar© add-in because it provides 
functions to estimate probability distribution parameters for stochastic samples 
and then simulate the distributions all in one pass (Richardson et al. [6]). 
Simulation and Econometrics to Analyze Risk: Simetar© is an Excel add-in for 
probability distribution parameter estimation, econometrics, forecasting, 
simulation, validation of simulation results, and ranking risky alternatives. For 
more details see www.simetar.com. Twelve parametric distributions were tested: 
beta, gamma, double exponential, exponential, logistic, log-log, log-logistic, log 
normal, normal, Pareto, Weibull, and uniform. In addition, ten kernel density 
functions were tested:  Cauchy, cosinus, double exponential, Epanechnikov, 
Gaussian, Parzen, quartic, triangle, triweight, and uniform. 
     A flowchart of the procedure used to test the 22 PDFs is provided in Figure 1. 
The flowchart shows how the process proceeds for testing one random input 
variable.  We start with a random variable, Y, with 10 positive values and then in 
Box 2 we estimated the parameters using the respective parameters from normal 
(ỸN), beta (ỸB), gamma (ỸG), uniform (ỸU), or Weibull (ỸW) maximum likelihood 
estimation (MLE). Several values were sampled from each distribution.  These 
five distributions represent commonly used distributions for variables with 
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positive values.  Because we do not know the true distribution for Y so we 
simulate 10 sample values using the MLE parameters for the five PDFs and refer 
to these as the “parent” distributions (Figure 1, Box 3).  The sample values for 
the five parent distributions in Box 3 are stochastic and change for every 
iteration based on their parameters in Box 2.   
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Figure 1: Flow chart of methodology used to determine the best PDF for 
simulating a random input variable. 
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     The next step is to calculate the parameters for the proxy parametric 
distributions and estimate the kernal distributions to be tested using the 10 
stochastic iterations for each of the five assumed distributions (Box 4).  As the 
sample values in Box 3 change for each iteration, the parameters for the 110 
PDFs in Box 4 are automatically updated by Simetar©.  The 110 distributions 
(22 PDFs * 5 parent distributions) were simulated using a stratified random 
sample of uniform standard deviates (Box 5). 
     A goodness-of-fit criteria value is calculated (Box 6) for each of the 110 
PDFs by comparing the simulated distributions in Box 5 to their parent 
distributions in Box 3.  In other words, the 22 simulated distributions that 
simulated the ỸN sample in Box 5 are compared to the stochastic sample of 10 
values in ỸN in Box 3 to test how closely they matched the values for the parent 
distribution.  This step is repeated to compare the 22 PDFs simulating the 
random sample values for the remaining parent distributions (ỸB, then ỸG, and ỸU 
and ỸW). 
     The goodness-of-fit criteria selected for testing how closely the simulated 
PDFs compare to the parent distribution is a weighted cumulative distribution 
comparison function (CDFDEV) available in Simetar©.  The CDFDEV criteria 
is calculated as the sum of the squared distance between two distribution 
functions with penalty weights increasing in value as the observations move 
away from the mean.  If a simulated PDF is identical to the parent distribution, 
the CDFDEV value equals zero.  When comparing two or more distributions as 
to their goodness-of-fit, the distribution with the smallest CDFDEV is the “best.”   
     As indicated in Figure 1, the simulation procedure repeats the steps in Boxes 
3-6 for 500 iterations or trials.  At the end of the simulation we have 500 
CDFDEVs for each of the 110 PDFs tested (Box 7).  The 22 PDFs of CDFDEVs 
for the ỸN sample are compared to one another to see which one is lowest for 
each iteration and across all 500 iterations (Box 8).  The best way to compare 
how closely a distribution simulated its parent distribution is to count how many 
times out of 500 it had the lowest CDFDEV, i.e., calculate the probability that a 
particular PDF will have the lowest CDFDEV.  The counting process was 
repeated a second time to estimate the probability of a distribution being the 
second most preferred, and a third time to determine which PDF is the third most 
preferred, etc. 
     The purpose of using five parent distributions, (Boxes 2 and 3) is to minimize 
the bias of generating the stochastic sample values with only a single 
distribution.  By testing five parent distributions we can be more confident that 
the PDF with the highest probability of the lowest CDFDEV is adequate enough 
to be a first choice when we have to assume a distribution for a sparse data 
random input variable of the specified type.  Additionally, this allowed for 
testing whether the type of distribution that generated the random sample biased 
the selection of the “best” PDF. 
     To further test the procedure we simulated eight different independent 
variables Ỹ1, …, Ỹ8 (Table 1).  Additionally, the procedure was used to test two 
multivariate distributions under the assumption that they were linear  
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Table 1:  Historical data for eight random input variables used for testing 
alternative PDFs for simulating random variables that have only 
positive values. 

 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 

1 212.09 307.00 35.72 32.00 45.87 40.70 9.73 32.90 

2 409.35 395.00 30.02 31.60 84.53 60.70 64.47 85.20 

3 269.27 358.00 29.58 26.80 87.89 59.60 66.25 86.30 

4 359.48 339.00 32.39 29.20 73.56 45.30 35.00 77.20 

5 712.73 364.00 42.92 26.10 78.42 45.50 57.58 64.80 

6 531.43 360.00 35.31 23.10 86.36 49.00 67.59 73.30 

7 729.00 558.00 35.43 26.90 87.85 59.00 68.57 92.50 

8 618.18 554.00 21.88 27.90 65.43 54.60 54.26 70.60 

9 436.36 393.00 17.78 19.00 41.96 40.00 13.76 72.00 

10 475.18 403.11 23.90 33.00 57.61 60.00 70.74 99.00 

         

Mean 475.31 403.11 30.49 27.56 70.95 51.44 50.79 75.38 

Minimum 212.09 307.00 17.78 19.00 41.96 40.00 9.73 32.90 

Maximum 729.00 558.00 42.92 33.00 87.89 60.70 70.74 99.00 

 
dependencies between Ỹ1, …, Ỹ4  as well as Ỹ5, …, Ỹ8 . The linear dependencies 
were modeled for the parent distributions using the procedure reported by 
Richardson et al. [7]. The results for the preferred PDFs were identical regardless 
of assuming a multivariate distribution or the assumption of independent random 
variables. 

3 Results 

The average CDFDEV values for simulating variables Ỹ1, …, Ỹ4  are 
summarized in Table 2 to show how the goodness-of-fit values work.  For 
variable Ỹ1, the PDF that generated the lowest average CDFDEV over the 500 
iterations is the Parzen KD with a value of 219.73.  The next best fit is the 
triweight KD with an average CDFDEV of 271.38.  The ranking of PDFs with 
the Parzen KD ranked first followed by the triweight KD is consistent across all 
four variables.  Excluding the Cauchy KD, the kernal distributions outperformed 
all of the parametric distributions.  The beta distribution was the preferred 
parametric distribution for three cases variables (Ỹ2, …, Ỹ4).  It is interesting that 
the normal density and Gaussian kernal functions did not perform well, even 
though the parent distributions for Ỹ1, …, Ỹ4   were generated using a normal 
distribution.  This result suggests that the Parzen or triweight kernel distributions 
are more suitable with small samples when the true underlying distribution for 
the random input variable is unknown. 
     Average CDFDEVs are useful to suggest a ranking of PDFs but they do not 
provide any statistical inference to the selection of the “best” PDF.  To provide a  
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Table 2:  Average CDFDEV values simulated for variables Y1-Y4 to 
demonstrate the range of values observed from simulating the 
variables with parameters for 22 alternative assumed distributions. 

Distribution YN1 YN2 YN3 YN4 

Beta > 579.43 4.46 1.20 

Double Exponential > > 788.41 256.18 

Exponential > > > 1,183.06 

Gamma > > 266.85 62.36 

Logistic > > 396.21 129.83 

Log-Log > > 1,016.92 335.25 

Log-Logistic > > > 499.85 

Lognormal > > > 93.95 

Normal > > 113.89 37.40 

Pareto > > > > 

Uniform > 789.52 6.07 1.95 

Weibull > > 74.65 25.45 

Cauchy KD > 1,173.50 8.96 2.82 

Cosinus KD 422.15 103.56 0.78 0.25 

Double Exp KD 1,932.73 482.92 3.68 1.17 

Epanechnikov KD 440.43 108.07 0.81 0.26 

Gaussian KD 1,225.90 305.36 2.34 0.75 

Parzen KD 219.73 53.49 0.40 0.13 

Quartic KD 342.16 83.73 0.63 0.20 

Triangle KD 377.94 92.81 0.70 0.23 

Triweight KD 281.39 68.73 0.51 0.17 

Uniform KD 637.90 157.02 1.20 0.39 
 A value greater than 2,000 is indicated by a ">" sign.  

 
probabilistic rigor for picking one PDF over another we turn to the probability 
statistics.  In this case we calculated the probability out of 500 draws that a PDF 
would have the lowest CDFDEV, or the second lowest or the third lowest, etc. 
     Based on the small set of eight random input variables in Table 1, the “best” 
PDF to use for simulating a random input variable, if we do not have a priori 
information, is the Parzen kernal (Table 3).  The “best” PDF for simulating the 
eight random variables is the Parzen kernal (Table 3).  The probability of the 
Parzen kernal being “best” is greater than 90% for the 40 combinations of 
variables (Ỹ1, …, Ỹ8) and parent distributions (normal, beta, gamma, uniform, 
and Weibull) reported in Table 3 and greater than 95% for 31 of the 40 
combinations. The assumption regarding the distribution used to simulate the 
observations for the parent distributions did not affect the outcome for any of the 
eight random variables, as there is no pattern showing that the Parzen KD was 
less accurate in simulating a normal, beta, gamma, uniform, or Weibull  
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distribution.  Even if the random values used to produce the parent distribution 
sample were generated by a normal distribution, the CDFDEV statistic was never 
lowest for the normal distribution.   
     The second best distribution was the Triweight kernal across all variables and 
distributions (Table 3).  Other PDFs outperform the Triweight kernal 3% to 16% 
for the 40 distribution variables tested suggesting the Triweight is a not a good 
second choice.  The third, fourth, and fifth best distributions were quartic, 
triangle, and cosines kernals, respectively. 
     None of the 12 frequently used parametric distributions outperformed the 
Parzen, triweight, quartic, triangle, and cosines kernals with a significant 
probability.  This outcome should be expected because the 12 parametric 
distributions tested force the data to conform to standard forms while the kernal 
distributions are more flexible to accommodate irregularities associated with 
small samples. 

4 Summary 

The purpose of this paper was to compare the goodness-of-fit for 12 different 
parametric distributions and 10 kernal distributions to determine which 
distribution would perform best for simulating random variables with positive 
values.  A Monte Carlo simulation procedure was developed to estimate how 
well 22 PDFs performed at reproducing random input distributions.  The 
procedure sampled eight variables five different ways, calculated parameters for 
22 PDFs and simulated the process 500 times to assign probabilities to each PDF 
being the “best” for simulating random input variables. 
     The procedure ranked the Parzen kernal “best” more than 90% of the time.  
The triweight kernal was ranked second.  The top two kernal distributions 
significantly outperformed 12 common parametric distributions and nine other 
kernel distributions. 
     The conclusion based on these results is that if we do not have any sound 
information on which to pick a probability distribution for simulating a random 
input variable with sparse positive values, we should use a Parzen kernal 
distribution. 
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