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Abstract 

This paper introduces the application of optimal and game theory methods in 
marine navigation. The functional scope of a standard ARPA anti-collision 
system ends with the simulation of the manoeuvre altering course or speed 
selected by the navigator. The problem of selecting such a manoeuvre is very 
difficult as the process of control is very complex and game making in its nature. 
The most adequate model of the process that has been adopted is a model of a 
differential game. The control goal is defined firstly, followed by a description of 
the base model and a presentation of approximated models. For each 
approximated model, an appropriate method of safe control to support the 
navigator decision in a collision situation has been assigned. The POSitional 
TRAJectory (POSTRAJ) and the RISK TRAJectory (RISKTRAJ) control 
algorithms have been designed. The considerations have been illustrated in 
examples of computer simulation algorithms to determine the safe ship 
trajectories in situations when passing many objects.  
Keywords: differential games, positional games, matrix games, dual linear 
programming, safety navigation, transport engineering, safe ship operations. 

1 Differential game model of the ship control process 

The process of ship control in collision situations, when a great number of 
objects is encountered, often occurs under the conditions of indefiniteness and 
conflict, accompanied by an inaccurate co-operation of the objects within the 
context of the International Regulations for Preventing Collision at Sea 
(COLREG). The most adequate model of the process that has been adopted is a 
model of a differential game, in general of j tracked ships as control objects 
[2,8]. 
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1.1 State equation 

The properties of the process are described by the state equation: 
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where  
( )tx 0

0
ϑG  - 0ϑ  dimensional vector of the process state of the own ship determined 

in time span  ]t,t[t k0∈ ,  

( )tx j
j
ϑG  - jϑ  dimensional vector of the process state for the j-th object,  

( )tu 0
0
νG  - ν0 dimensional control vector of the own ship, 

)t(u j
j
νG  - νj dimensional control vector of the j-th object, see fig. 1. 

     Taking into consideration the equations describing the own ship’s 
hydromechanics and equations of the own ship’s movement relative to the j-th 
encountered object, the equations of the general state of the process (1) take the 
following form: 
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     The state variables are represented by the following values: 
ψ=1

0x - course of the own ship, 

ψ�=2
0x - angular turning speed of the own ship, 
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Vx3
0 = - speed of the own ship, 

β=4
0x - drift angle of the own ship, 

nx5
0 =  - rotational speed of the screw propeller of the own ship, 

Hx6
0 =  - pitch of the adjustable propeller of the own ship, 

j
1
j Dx = - distance to the j-th object, 

j
2
j Nx =  - bearing of the j-th object, 

j
3
jx ψ=   - course of the j-th object, 

j
4
j Vx =  - speed of the j-th object. 

where 4,6 j0 == ϑϑ . 
 

 

Figure 1: Block diagram of a differential game model including j ships. 

     While the control values are represented by: 

r
1
0u α=  - reference rudder angle of the own ship, 

r
2
0 nu = - reference rotational speed of the own ship’s screw propeller, 

r
3
0 Hu = - reference pitch of the adjustable propeller of the own ship, 

j
1
ju ψ= - course of the j-th object, 

j
2
j Vu = - speed of the j-th object. 

where 2,3 j0 == νν . 

1.2 Control and state constraints 

The constraints of the control and the state of the process are connected with the 
basic condition for the safe passing of the objects at a safe distance Ds in 
compliance with COLREG Rules, generally in the following form: 
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0)u,x(g jj
jjj ≤
νϑ                                                (3) 

     The constraints referred to as the ships domains in marine navigation, may 
assume a shape of a circle, ellipse, hexagon, or parabola and may be generated – 
for example – by an artificial neural network, see fig. 2 [1]. 
 

Figure 2: Forms of the neural ships domains. 

1.3 Quality index control 

The synthesis of the decision making pattern of the object control leads to the 
determination of the optimal strategies of the players who determine the most 
favourable, under given conditions, conduct of the process. For the class of    
non-coalition games, often used in the control techniques, the most beneficial 
conduct of the own control object as a player with j-th object is the minimization 
of her goal function in the form of the payments – the integral payment and the 
final one: 
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     The integral payment represents loss of way by the ship while passing the 
encountered objects and the final payment determines the final risk of collision 
rj(tk) relative to the j-th object and the final deflection of the ship d(tk) from the 
reference trajectory [3,5,7]. 

2 Control algorithms 

Each approximated model of the process may be assigned a respective method of 
safe control of a ship. The multi-stage positional game POSTRAJ and multi-step 
matrix game RISKTRAJ algorithms of safe ship control will be presented [4,6]. 

2.1 POSTRAJ algorithm 

The safe optimal control of the own ship )t(u0
∗ , equivalent for the current 

position p(t) to the optimal positional steering )p(u0
∗ , is determined by: 

- sets of acceptable strategies ( )[ ]k
0
j tpU  for the encountered j-th object relative 

to the own ship, 
- a pair of vectors m

ju  and j
0u ,  

- the optimal positional strategy for the own ship )p(u∗0  from the condition: 
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where U0 – sets control of the own ship, Uj – sets control of a met j-th object. 
     Function 

[ ] ∫=
kL

0

t

t
0k00 dt)t(uL),t(xS         (6) 

is the own ship’s control goal function which characterises the ship’s distance at 
the moment t0 to the closest point of turn Lk on the assumed voyage route, see   
fig. 3.  
     The criterion for the selection of the optimal trajectory of the own ship is 
achieved by determining the ship’s course and speed, which would ensure the 
smallest loss of way for a safe passing of the encountered objects, at a distance 
which is not smaller than the assumed value Ds, always with respect to the ship’s 
dynamics in the form of the advance time to the manoeuvre tm, with element 

ψ∆
mt  during course manoeuvre ψ∆  or element V

mt
∆  during speed manoeuvre 

V∆ . 
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Figure 3: Navigational situation representing the passing of the own ship and 
j-th objects. 

2.2 RISKTRAJ algorithm 

The safe optimal control of the own ship )t(u0
∗  is the solution of a matrix game 

in which the own ship as player O has a possibility of using s0 pure various 
strategies, and a j-th met object as player J has sj various pure strategies. Through 
the limitation of s0 and sj strategies selection the COLREG requirements can be 
taken into consideration. In a dual problem player O aims to minimize the risk of 
collision rj, while player J aims to maximize the risk. The value of the risk of the 
collision rj is defined as the reference of the actual approach situation at sea 
described by parameters j

minD  and j
minT , to the assumed assessment of the 

situation defined as safe determined by safe distance Ds and safe time Ts of the 
approach: 
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where the weight coefficients w1, w2 and w3 are dependent on the state of the 
visibility at sea, dynamic length, the dynamic beam of the ship and the kind of 
water region.  
     The components of the mixed strategy express the distribution of the 
probability of the players using their pure strategies. As a result, for the goal of 
control quality index in the form: 
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probability matrix P )]s,s(p[ 0jj of applying each one of the particular pure 
strategies is obtained. Applying the dual linear programming method, the 
solution of the safe optimal control problem is the strategy representing the 
highest probability: 

( )[ ]{ }max0jj
)(

o
*
0 s,spu)t(u 0ν=          (9) 

 

 
 POSTRAJ algorithm RISKTRAJ algorithm 

G
ood visibility  D

s =
0.5 nm

 
  

 r(tk)=0, d(tk)=5.63 nm r(tk)=0, d(tk)=7.57 nm 
R

estricted visibility  D
s =

3.0 nm
 

  
 r(tk)=0, d(tk)=6.95 nm r(tk)=0, d(tk)=9.76 nm 

Figure 4: Positional and risk safe optimal game trajectories in situation on 
the Baltic Sea for j=16 encountered ships. 
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3 Computer simulation 

Computer simulation of positional trajectory POSTRAJ and risk trajectory 
RISKTRAJ control algorithms was carried out on in examples of real 
navigational situations of passing different numbers of encountered objects at 
sea.  See figures 4–6. 

 POSTRAJ algorithm RISKTRAJ algorithm 

G
ood visibility  D

s =
0.5 nm

 

  

 r(tk)=0, d(tk)=2.05 nm r(tk)=0, d(tk)=7.27 nm 

R
estricted visibility  D

s =
3.0 nm

   
 r(tk)=0, d(tk)=6.51 nm r(tk)=0, d(tk)=9.16 nm 

Figure 5: Positional and risk safe optimal game trajectories in situation on 
the North Sea for j=20 encountered ships. 

4 Conclusion 

POSTRAJ and RISKTRAJ control algorithms represent formal models of mental 
navigators leading the ship and making manoeuvring decisions. These 
algorithms can be used for the computer support of navigator safe manoeuvring 
decisions in collision situations using information from the ARPA anti-collision 
radar system. 
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 POSTRAJ algorithm RISKTRAJ algorithm 

G
ood visibility  D

s =
0.5 nm

 

  
 r(tk)=0, d(tk)=1.67 nm r(tk)=0, d(tk)=2.37 nm 

R
estricted visibility  D

s =
3.0 nm

 
  

 r(tk)=0, d(tk)=2.37 nm r(tk)=0, d(tk)=8.43 nm 

Figure 6: Positional and risk safe optimal game trajectories in situation in 
the English Channel for j=42 encountered ships. 
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