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Abstract 

The processes of network nodes’ resistance/immunity to hazard spread were 
analyzed in this study. The case when nodes’ immunity is non-constant (which 
depends on various factors) is analyzed. The mathematical algorithm (based on 
the Bayesian approach) for non-constant network nodes’ immunity updating by 
observed data is presented in this paper. A numerical experiment was performed 
to illustrate the application of the developed algorithm. 
Keywords: Bayesian approach, non-constant immunity modelling. 

1 Introduction 

More and more attention is focused on the problems related to quantitative 
assessment of the behaviour of systems/components/infrastructures in terms of 
dependability and security and, more generally, quality of service indicators. 

combinations form a structure network system (i.e. nodes and network 
lines/channels) (fig. 1).  
     A hazard/error, its propagation and negative effect, the natural physical 
ageing of the system, the influence of external factors to the system vitality and 
so on affect the network system dependability and quality of the service. On the 
other hand, in a network system some (or all) nodes can have immunity from 
hazards (for example, in computers we have firewalls, antivirus programs against 
hacker attacks and computer viruses), according to the hazard propagation 
immunity of the system node changes (which could increase). 
     When analyzing network systems under the influence of the hazard 
propagation process, one point of interest is the modelling of node resistance 
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(immunity changes). A numerical experiment of the proposed algorithm 
application for updating the node immunity function is presented in this study. 
     This study could be used for:  

• Forecasting how many cycles are necessary to eliminate the hazard or to 
reduce it to a safe level; how long (how many cycles) the system will be 
able to work normally under the influence of the hazard. 

• Modelling of the hazard distribution in the network with non-constant 
node immunities.  

 

 

Figure 1: An example of a general network system. 

2 Definitions of hazard, immunity, flows and others concepts 

Hazard is defined as a feature or characteristic of a material, a technological 
process, information, the negative effect of human activities, the natural physical 
ageing of the system, the influence of external factors or other phenomena that 
specifies a potential possibility of endangering human life, health, nature, 
buildings, equipment, etc. Illustrations of hazard could be poisonous chemical 
substances kept in stock, an open source of radiation, a car with brakes out of 
order, a lock that is built on a river that flows through a city, etc. Hazard 
measurement is less clearly defined; therefore here such qualitative evaluations 
as high hazard, medium hazard or low hazard are used. Nevertheless, in certain 
cases, quantitative expressions are also used. For example, when we speak about 
a chemical material with definite toxicity, the quantity of that material is an 
important characteristic. On the internet, one of the computer risk characteristics 
is a number of computer viruses, etc. Sometimes, certain equivalents are used, 
for example, explosive materials are compared to the trotyl equivalent.  
     The development and expansion of various networks and network structures 
create favourable conditions for the spread of hazard through network channels. 
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Examples of such phenomena could be the spread of toxic/radioactive substances 
or high temperatures; and its influence on devices, people, etc. 
     Immunity/resistance is the systems’ ability to resist negative effects (hazard). 
Illustrations of immunity could be antivirus programs, firewalls against a 
computer virus, hacker attacks, fire protection in buildings, traffic lights at 
crossroads, the immune system of an organism, etc. 
     Now we will define several concepts that will be used in the paper. 
     The number of network nodes. The number of network nodes is marked as N. 
     Additive hazard. This is a type of hazard where hazards in the nodes of the 
network can be added to or a part of the hazard moved to the other nodes. 
Examples of the additive hazard are: the collection of hazardous materials, the 
amount of fake money in the supermarkets, transport intensity at the crossroads, 
etc, marked as H. 
     Flow intensity. qij is the coefficient of flow intensity in the network lines or 
channel; it marks the part of the hazard in the node i that will be transmitted to 
the node j. The intensity of the flow to the node j and the intensity of the flow 
from the node j are defined respectively 
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     Hazard transfer cycle. Hazard transfer in the network from one node to the 
other is regarded as one hazard transfer cycle.  
     Network node immunity. Ij(·) is the coefficient of the network node immunity. 
It marks which part of the hazard is stopped, before getting into the node j (0 ≤ Ij 
≤ 1, i.e. percentage). Node immunity can be created by the security systems,   
anti-virus computer software, etc. The “observed” value of node j immunity 
could be obtained  
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i = 1, 2, …, here i is the number of cycles, jiq is the flow of hazard to the node j 
in the ith cycle, Pji is the amount of hazard that gets into the node j during the ith 
cycle.  
     An example of a simple three node network system with describing elements 
is presented in fig. 2.  
     The mechanism of hazard propagation in network systems in the case of a 
single hazard evolved in one of the network nodes and in the case when hazard 
arises during each cycle (with constant node immunities) was analyzed by 
Augutis et al [1]. In their study the marginal hazard distribution mathematical 
model of the hazard caused by fuel transportation by fuel trucks was estimated in 
a fragment of the Lithuanian roadway network. In this study non-constant 
immunity is analyzed. 
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Figure 2: An example of a network system. 

3 Node immunity function updating by application of the 
Bayesian approach 

Commonly the Bayesian approach is applied to update estimated parameters of a 
stationary process when more statistical information becomes available. But 
often there is a need to deal with problems that are related to non-stationary 
processes. In such cases available statistical data cannot be used to update the 
characteristics of the previous period, because it represents the other state of the 
system. The required information for analysing a non-stationary process is 

• distribution of statistical data; 
• form of the trend of system dynamic describing characteristics (as 

functions of some factors and parameters), for example, it is 
exponential, polynomial, linear, etc. 

     In the presented task, the immunity of the chosen node depends on l different 
factors F1, …, Fl, and the trend of immunity is a priori known, so the expected 
value of immunity satisfies this equality 

),...,,(),...,,(E 11 kk FFfFFI θθ = ,    (3) 

here θ = (θ1, …, θk)T the multidimensional parameter. Prior information can lead 
to some uncertainty and these parameters are assumed as random independent 
variables with their prior probability distributions. 
     Assume that parameters θ1, …, θk, density functions of prior distributions 
pi(xi), i = 1, …, k, distribution of statistical data Ij, j = 1, …, m, (immunity in the 
jth cycle) is also known, i.e. likelihood function L(·) that satisfies eqn (3). 
Posterior multidimensional density function is obtained by application of the 
Bayesian formula for this information [2] 
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j = 2, …, m, Ri is the range (set of all possible values) of parameter θi. 
     So the Bayesian estimate (expected value of posterior distribution) of 
parameter θi is 
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j = 2, …, m.  

3.1 Numerical experiment 

Let’s assume, that in the chosen node immunity has exponential dependence on 
the number of cycles i, i.e. the mean of the immunity is equal to its a priori 
known dependence function 

iaeiaI ⋅−−= 1),(E , a > 0.                 (6) 

     Statistical data Ii: 0 ≤ Ii ≤ 1, i = 1,2, …, m, see fig. 3, were simulated by Beta 
distribution with the parameters 
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Figure 3: Simulated statistical data. 
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     The value of parameter a was chosen as a* = 0,12 for this simulation. The 
parameters of the Beta distribution were obtained considering requirement (3). 
Parameter β is expressed by α (eqn (7)) in order that expected value and variation 
of immunity have such properties 
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     In this case, the likelihood function is 
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i = 1,2, …, m, B(·) is the Beta function.  
     In the mathematical model a prior distribution of unknown parameter a is 
assumed as a non-informative distribution, i.e. the density function is 

,)( constxp = .0>x               (10) 

     In the case of vague prior knowledge and a large amount of data being 
available for updating a prior distribution, the usage of so-called non-informative 
prior distribution is useful, i.e. the posterior distribution is based on the 
information of likelihood function [3, 4].  
     The posterior distribution of parameter a is obtained by formula (4) using its 
prior density function and simulated data. So the density function of the posterior 
distribution is 
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j = 2, …, m, and Bayesian estimate (expected value) of parameter a is 
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j = 2, …, m.  
     The results (the estimates of the unknown parameter using the Bayesian 
approach) of the considered numerical experiment are shown in fig. 4. In this 
case the total sum of error squares is 
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Updated immunity functions are presented in fig. 5.  
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Figure 4: – Bayesian estimates of random parameter a,   – true value 
of parameter a (a* = 0,12), j – number of Bayesian approach 
applications. 

 

Figure 5: Graphics of true immunity function ( ) and updated ones after 
the jth Bayesian approach iteration, i – number of the cycle.  
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Figure 6: Transformation of statistical data (immunity) distribution density 
function, j – number of Bayesian approach applications. 

 

Figure 7: Means ( ) and variances ( ) of the distribution of node immunity, 
j – number of the cycle. 

     The transformation of statistical data (immunity) distribution density function 
obtained by the Bayesian approach application for updating random parameter a 
estimate is 
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0 < x < 1, j is the number of the cycle. Its graphs are presented in fig. 6, the 
means and variances of this distribution are presented in fig. 7.  

4 Results and conclusions 

The main aim of this paper is to present the developed mathematical model for 
network node immunity changes updated by the Bayesian approach and new 
available observations. With use of the presented algorithm the node immunity 
forecast is more and more precise (i.e., convergence to the true value); it gives 
the possibility to perform modelling of hazard distribution in the network with 
non-constant node immunities. 
     In the paper illustration of the developed model applicability is presented by 
numerical experiment. It was shown that the Bayesian approach application 
gives descending uncertainty of immunity describing distribution.  
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