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Abstract 

This paper considers the influence of spatial variability of undrained shear 
strength (cu) on the stability of long slopes cut in clay. Random fields of cu are 
mapped onto finite element meshes used in Monte Carlo analyses, and slope 
performance is quantified in two ways: (a) reliability is computed as a function 
of the global factor of safety, F (based on the mean property value); and (b) 
volumes of material associated with potential slides are discussed with respect to 
the probability of failure. By plotting contours of displacement and shear strain 
invariant at failure, slide volumes are shown to be influenced by the depth-
dependency of the statistics of cu in 2D analysis and, additionally, by the type of 
failure mode in 3D analysis. Spatial variability can occasionally result in slope 
failure at relatively high values of F, although the associated risk may then be 
relatively low due to the greater likelihood of more localised failure. 
Keywords: finite elements, reliability, risk, slope stability, spatial variability, 
stochastic analysis. 

1 Introduction 

Spatial variability of material properties affects soil behaviour and geo-structural 
performance [1]. It also causes uncertainty about actual ground conditions, and 
leads to the need for probabilistic analysis and measures of response [2]. These 
include reliability, which is the probability of failure not occurring, and risk, 
which is the probability of failure × consequence of failure. This paper considers 
reliability and risk for the problem of 3D slope stability. In particular, it uses 
finite elements and stochastic analysis to investigate the influence, on slope 
performance, of the spatial variability of undrained shear strength (cu). 
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1.1 Background 

The spatial variability of cu may be represented by its statistics. These are the 
mean (µ) and standard deviation (σ), which define the coefficient of variation, V 
= σ/µ, and the scale of fluctuation (θ), which is a measure of the distance over 
which property values are strongly correlated. The horizontal scale of fluctuation 
(θh) is generally larger than the vertical scale of fluctuation (θv), and the degree 
of anisotropy of the variability is ξ = θh/θv. 
     Paice and Griffiths [3] and Griffiths and Fenton [4,5] used finite elements and 
stochastic analysis to investigate 2D slope reliability. They assumed a depth-
independent, lognormal distribution for cu, and used local average subdivision 
[6] to generate isotropic (ξ = 1) random fields of cu. Hicks and Samy [7–10] 
performed similar 2D analyses, but used a normal distribution for cu, arguing 
that, for practical ranges of V (0.1–0.3), the chances of negative property values 
were negligible. They considered both anisotropic (ξ > 1) and depth-dependent 
random fields of cu, and described a method for deriving reliability-based 
(problem-dependent) characteristic values in line with EC7 [9–10]. 
     Spencer and Hicks [11], Spencer [12] and Hicks and Spencer [13] used 
parallel computing [14] to investigate the reliability of 3D slopes. This paper 
reviews their principal findings. It then considers the risk posed by 3D slope 
failures, by investigating the link between probability of failure and potential 
slide volumes. 

2 3D modelling of slope reliability 

Figure 1 shows details of the 45º, 3D slope analysed by Spencer and Hicks [11]. 
It is H = 5 m high, L = 100 m long and rests on a firm base, and is modelled 
using 20-node brick finite elements with 2 × 2 × 2 Gaussian integration [15]. The 
boundary conditions comprise a fixed base and rollers on the back face 
preventing displacement in the x direction. The two sides have rollers allowing 
only vertical (z) displacement, as allowing displacement in the x direction was 
found to cause a bias in slope failures near the mesh ends. Hicks and Spencer 
[13] demonstrated the validity of the boundary conditions by investigating slopes 
of different length. 
 

 

Figure 1: Problem geometry and cross-section mesh details. 
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     The soil is modelled as an elastic, perfectly plastic Tresca material, and is 
characterised by a spatially varying undrained shear strength defined at the 
Gauss point level. Random fields of cu are generated using local average 
subdivision [6,7], and by assuming a normal distribution, a depth-independent 
mean (µ) and coefficient of variation (V = 0.3), and vertical and horizontal scales 
of fluctuation (θv = 1.0 m and θh). 
     The method of analysis is described by Spencer and Hicks [11] and is similar 
to previous 2D studies (but with some changes to improve efficiency). In brief, 
slope reliability R is computed as a function of the global factor of safety F (i.e. 
based on µ) by Monte Carlo simulation. For a given V, θv and θh, N random 
fields of cu are generated. The problem domain is then analysed for each field in 
turn, by applying gravity loading to generate the in situ stresses. This is done for 
progressively lower values of µ (and hence F) until the slope fails. 
     For a given value of F, R = (1–Nf/N) × 100, in which Nf is the number of 
realisations in which slope failure occurs at a global factor of safety equal to, or 
greater than, F. Figure 2 summarises the influence of ξ (= θh/θv) on the results, 
for both (a) 2D and (b) 3D idealisations of the problem. For 2D modelling (using 
N = 1000), there is a wide distribution of F for all values of ξ, due to the plane 
strain condition implying an infinite scale of fluctuation in the third dimension. 
The solution is also highly dependent on the degree of anisotropy of the 
heterogeneity, although it converges at higher values of ξ [7–10]. In contrast, for 
3D modelling (using N = 500) there is no such convergence. Moreover, Spencer 
and Hicks [11] identified three possible failure modes. These are illustrated in 
Figure 3, which shows typical deformed meshes and contours of horizontal (out-
of-face) displacement at failure. They are summarised as follows: 
 

 
     (a) 2D Analyses                                       (b) 3D Analyses 

Figure 2: Reliability versus global factor of safety [11]. 

(a) Mode 1: For θh < H, there are no semi-continuous weaker zones along which 
failure can propagate. Hence, failure mechanisms pass through strong and 
weak zones alike, the average cu on the rupture surface approaches µ, and the 
range of solutions (across the realisations) is narrow. The solution is similar 
to a 2D deterministic solution based on µ; i.e. the failure mechanism initiates 
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from the toe and extends along the length of the slope, and R increases 
rapidly from 0–100% as F passes through 1.0. 

(b) Mode 2: For H < θh < L/2, discrete failures are likely as failure is attracted to 
semi-continuous weaker zones. As L increases (relative to θh) R decreases, 
due to the increased likelihood of encountering a zone weak enough to 
trigger failure. Hicks and Spencer [13] showed that simple probability theory 
can be used to extrapolate the results of detailed stochastic analyses (such as 
in this paper) to predict the performance of slopes of different length. 

(c) Mode 3: For θh > L/2, the soil takes on a layered appearance and failure 
extends along the length of the slope, rather like Mode 1. However, in 
contrast to Mode 1 there is a wide range of solutions, as the location of the 
slide is influenced by the locations of the weaker layers. This case is 
analogous to a 2D stochastic analysis, as is seen by comparing the relevant 
curves in Figures 2(a) and 2(b). 

 

     
 
            (a) Mode 1                         (b) Mode 2                          (c) Mode 3 

Figure 3: Typical failure mechanisms [11]. 

3 Modelling of risk 

The Spencer and Hicks [11] analyses have been revisited to investigate the risk 
associated with potential slides. If risk is the probability of failure × consequence 
of failure, it can be quantified by equating consequence with slide volume. 

3.1 2D analysis 

For 2D analyses, the slide volume has been estimated from contours of shear 
strain invariant at failure. An imaginary point in space, well above the centre of 
the slope face, was chosen. Next, a series of lines radiating out from this point 
(across the slope mesh) was considered. The maximum value of shear strain 
invariant along each line was detected and, by connecting the locus of maxima 
from all the lines, the rupture surface was defined. Figure 4 shows the contours 
of shear strain invariant for one realisation and the back-figured rupture surface. 
The slide volume is simply the volume of material above the rupture surface. 
     Figure 5(a) shows the distribution of slide volumes, as a percentage of the 
mesh volume, for ξ = 6 (for N = 400). The relatively narrow range of solutions is 
due to the importance of slope height on slope stability when µ is constant with 
depth and V is not large (although note that some of the larger volumes are due 

 © 2008 WIT PressWIT Transactions on Information and Communication, Vol 39,
 www.witpress.com, ISSN 1743-3517 (on-line) 

338  Risk Analysis VI



to interaction between the mechanism and vertical boundary). That is, failure 
will tend to initiate from or near the slope toe, as highlighted by the distribution 
of “slide depths” in Figure 5(b). In contrast, Figure 6 shows distributions for a 
slope in which µ is directly proportional to depth (with V constant). For this 
special case, slope stability is independent of slope height and failure can initiate 
from any point along the slope surface [7], as is evident from the approximately 
uniform distribution in Figure 6(b). For the two examples illustrated in Figures 
4–6, there was no obvious link between probability of failure and slide volume; 
i.e. the distribution of possible volumes was similar for all failure probabilities. 
 

       

Figure 4: Typical failure mechanism for constant µ. 
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                     (a) Slide Volume (%)                              (b) Slide Depth (m) 

Figure 5: Frequency distributions for constant µ. 
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Figure 6: Frequency distributions for µ ∝ depth. 
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3.2 3D analysis 

The estimation of slide volumes is harder in 3D, especially for Mode 2 type 
failures. It is still possible to compute contours of shear strain invariant, but three 
factors make the automated computation of slide volumes more difficult: (a) the 
heterogeneity of cu can trigger the initiation of multiple failure mechanisms at the 
local scale, which sometimes makes the global failure mechanism harder to 
identify; (b) the development of more than one slide along the length of the 
slope; and (c) the interaction of two or more slides. 
     A simple method has been adopted to enable a crude comparison of slide 
volumes. For each realisation the maximum nodal displacement at slope failure 
was recorded. The slide volume was then taken to be the volume of all elements 
exhibiting a displacement greater than 15% of the maximum nodal displacement. 
This approximate percentage was based on the 2D deterministic solution (based 
on µ); i.e. by finding out what percentage of the maximum displacement gave a 
volume comparable with that found by computing the rupture surface using the 
shear strain invariant contours. The approach has been validated by comparing 
the 2D deterministic mechanism with the “slide volume” predicted for 3D using 
the 15% threshold. 
     Figure 7 shows two curves for reliability versus factor of safety for ξ = 12; the 
original curve from Spencer [12] and a new curve derived by re-analysing the 
problem for a further 500 realisations. Also shown are the estimated slide 
volumes for the latest set of analyses, expressed as a percentage of the total mesh 
volume. Although the figure demonstrates the wide range of slide volumes 
possible for different probabilities of failure, it is also apparent that, for higher F, 
the volumes are much smaller. 
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Figure 7: Reliability and slide volume versus global factor of safety. 

     The wide range of possible mechanisms is illustrated in Figure 8, which shows 
displaced meshes and contours of horizontal (out-of-face) displacement for nine 
realisations. The estimated slide volume percentages seem reasonable for the 
individual mechanisms. (Note that the slide volume for Mode 1 was about 50%.) 
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(a) 18%                              (b) 27%                              (c) 31% 
 

       
 

(d) 25%                                (e) 6%                                (f) 6% 
 

       
 
               (g) 9%                               (h) 16%                                (i) 1% 

Figure 8: Example Mode 2 failure mechanisms and estimated slide volumes. 

4 Conclusions 

The paper has highlighted the need for 3D analysis of spatially variable slopes. 
2D analysis implies an infinite scale of fluctuation in the third dimension and 
considers only one failure mode. In contrast, 3D analysis leads to three possible 
failure modes, which depend on the value of θh relative to slope geometry. 
Modes 1 and 3 are extreme modes, analogous to 2D deterministic and stochastic 
solutions, respectively. Mode 2 includes single, multiple and interacting discrete 
failures, and leads to a level of reliability that is function of slope length. For this 
case, there is wide range of possible slide volumes for most probabilities of 
failure. However, the risk associated with higher global factors of safety may be 
relatively low, due to the low probability of failure and a decreased likelihood of 
large slide volumes. 
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