
The local confidence uncertainty plume            
of SAKWeb© 

J. Negreiros1, M. Painho1, A. Cristina Costa1, P. Cabral1  
& F. Aguilar2 
1Instituto Superior de Estatística e Gestão de Informação,  
Universidade Nova de Lisboa, Lisboa, Portugal 

2Escuela Politécnica Superior, Universidad de Almería, Almería, Spain 

Abstract 

The main goal of this research paper is to introduce a new uncertainty tool based 
on the Moran I correlogram, rescaled OK variance and local variance in a Web 
environment. It is hoped that this implementation will be used by users with 
problems to layout risk analysis environmental maps and plumes assessment. 
Spatial analysis, Moran I and other uncertainty measures are also reviewed. 
Keywords: GIS, spatial analysis, Kriging, variogram, Moran I, local variance, 
local confidence, plumes assessment, SAKWeb©. 

1 Spatial analysis: overview 

The geographical view of spatial analysis is essentially cartographical driven 
regarding the recognition and description of spatial patterns involving simple 
statistics and the direct use of visualization. Anselin [1] wrote that spatial data 
analysis could be defined as the study of statistical phenomena that manifest 
themselves in space. As a result, location, area, topology, spatial arrangement, 
distance and interaction become the focus of attention. As confirmed by Longley 
et al. [9], spatial analysis is a set of methods whose results change when the 
object location being analyzed changes too. Hence, spatial analysis is more 
widespread than statistical analysis of non-spatial information because it requires 
access not only to attributes but also to location and topological knowledge. It 
could be described as part of the process of transforming spatial data into 
geographical knowledge. Quoting Longley et al. [9], it can make what is implicit 
explicit. 
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     Clark and Hosking [6] see spatial analysis as spatial modelling of a decision 
support such as GADS for solid waste spatial planning. In conjunction with the 
network and spatial analysis of GIS modules, the DSS Location Planner© 
analyzes market saturation, retail facilities accessibility, population mobility and 
demand-supply prediction based on demographic and socio-economic attributes, 
warehouse locations, distance or travel time between sites and expenditure flows 
between demand and supply chains (Arentze et al. [3]). However, according to 
Openshaw [18], an emphasis of DSS is a convenient distraction to hide a lack of 
the relevant GIS technology. 
     Ignoring technical matters and human technology resistance, spatial DSS, 
education and W3 services create political pressure on governments regarding 
public policy decisions in such fields as environmental protection, natural 
resource management, hazardous waste location and regional development 
(‘government of the people, by the people and for the people’). This millennium 
will be about slowing the rate of deforestation, improving water quality, 
restoring wildlife habitats and understanding the earth’s limitations       
(ArcNews [2]). Thus, the handling of spatial data should generate definitive 
answers. 
     McMaster [10] confirms this belief in his hazardous materials modelling for 
Santa Monica, CA. By identifying the explosives, flammable gases, solids and 
liquids, radioactive materials, corrosives and poisonous materials present within 
the community of 100,000 people, the evacuation plan by the Santa Monica 
Police and Fire Department became very clear. Yet, Yu [25] substantiate the 
difficulty of reaching a good balance between acceptable landscape planning in 
the Red Stone National Park, South China, and conflicts with ecologically 
protective boundaries for endangered medium-sized mammals and amphibian 
species, tourist preferences and newly reclaimed agriculture land. It is not easy to 
find the perfect solution. For Vale [20], resolution of this conflict for the same 
space involves three solutions: hierarchical dominance (certain matters are more 
important than others), multiple use (the same space may have several uses) and 
trade-off (certain issues are chosen to the detriment of others). 
     Another classical time example is shoreline limits, which are particularly 
useful for the study of global warming effects on coastal cities. Which shoreline 
should be adopted? Should the geographical database be dynamic and capable of 
tracking fluctuations? One possibility is to consider the shore slope 
classification, the sine angle and the time sea level above the height of the lowest 
tide. Since tides follow a deterministic formula, it is possible to calculate the 
exact shoreline location for a given t time. It is implicit that spatial analysis is a 
GIS component to support decision-making for solving problems with a spatial 
component. 
     Rossiter [19] also includes spatial flow modelling and deterministic processes 
like groundwater movement and environmental quality management based on 
economic criteria such as land use and transportation. It seems that geographical 
analysis comprises GIS (an applied computer-science view), spatial statistics 
including uncertainty issues (spatial autocorrelation, spatial autoregression, 
Kriging, stochastic simulation, morphologic geostatistics and space-time 
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processes), classical aspatial statistics, remote detection and deterministic spatial 
analysis such as optimization routing, B-Splines, overlay, buffering and DEM 
operations (cartographic modelling). 
     Clearly, two global methods emerge regarding spatial analysis: the 
deterministic and the stochastic view. If the former has no capability for 
assessing uncertainty, the latter must be viewed as a process instead of a single 
function with an increase in computer power demand, particularly with 
variography and Kriging spatial interpolation. 
     Briefly, Kriging is a geostatistical estimation technique. It uses a linear 
combination of surrounding sampled values to make such predictions. To make 
such predictions, the Kriging system needs to know the weights applied to each 
surrounding sampled data. In fact, it allows deriving weights that result in 
optimal and unbiased estimates (within a probabilistic framework, Kriging 
attempts to minimize the error variance and systematically set the mean of the 
prediction errors to zero, so that there are no over or under estimates). However, 
it is the variogram that underpins Kriging. The variogram allows one to quantify 
the correlation between any two values separated by a lag distance h and uses 
this information to make predictions at unsampled locations by assigning 
different weights within the Kriging system. 

2 The enhanced local confidence interval of SAKWeb© 

The main issue discussed here regards risk analysis and uncertainty because 
spatial data lives with it. Uncertainty is a dimensionless parameter for which 
high values are bad and lower ones are optimal. Thus, uncertainty must be space 
geometry dependent because areas away from sample locations hold higher 
uncertainty. It must also take into account the variability of sample values. 
     Since different interpolation procedures may give dissimilar results and 
ground truth can never be known, it may be useful to know what the predicted 
chance of exceeding a given upper limit is, so decisions about expensive cleanup 
operations can be well founded, for instance. With agricultural applications, 
administrators might be interested to know how much of the whole population 
would give a higher return than the value of a certain crop while supervisors 
might be looking at toxicity levels. The same question arises when the fire 
department calculates tree density in tropical forests, when the fishery service 
computes water salinity and the density of shellfish or when engineers evaluate 
slope stability conditions to decide on the best route for a new road. Irrespective 
of the circumstances, the key question is to determine how much of the 
population is likely to lie above or below a cutoff value. 
     Two topics emerge from this perspective. Firstly, the choice of the probability 
threshold can be subjective. Secondly, the estimation error may be ignored 
because the contaminated location can be declared safe on the basis of an 
estimate of pollutant concentration, which is incorrect but slightly less than the 
regulatory threshold. If the true and the estimated values belong to quadrant II on 
an Estimated versus True grade plot, a good opportunity to invest can be missed. 
If it falls within quadrant IV, expensive consequences can be expected. 
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2.1 Overview of uncertainty measures 

How can we quantify these uncertainties? The misclassification risk associated 
with a particular physical cutoff definitely increases at threshold location 
boundaries. If the goal of a manager’s decision is to minimize unnecessary 
cleansing and ill health costs (in conjunction with a pre-setup deterministic cost) 
then it is possible to layout the total spatial health and remediation costs based on 
the resulting expected false negative error and false positive error models. 
     With regard to economic land evaluation, linear programming including 
sensibility analysis is a new possibility. Burrough [4] presents a gradual 
deterministic response of PH crop illustrating soil acidity impact on crop growth: 
No crops, if PH>=7; Normal growth, if PH<=5; (7-PH)/2 of crops, if 5<PH<7. 
     By assuming an unknown constant mean, non-linear Probability Kriging (PK) 
and Indicator Kriging (IK) present an alternative uncertainty method whose final 
estimates show the probability mapping for exceeding a given cutoff. Because of 
the Kriging smoothing effect, the local distribution of Kriging estimates is 
conditionally biased leading to a false and biased probability distribution, 
especially when the cutoff value becomes very high or very low. Juang and Lee 
[8] point out that PK accuracy is much higher than that of IK in their probability 
estimation of heavy–metal concentration in Taiwan. According to both authors, 
it yields more space variability and it behaves better with a screen-effect 
situation by reducing the risk of getting inconsistent probabilities. In addition, 
with both approaches, the local uncertainty cumulative distribution is taken into 
consideration, which avoids the strong assumption about the spatial distribution. 
     Geostatistical simulation tries to reflect the mean, the histogram, the 
covariance structure and the spatial data variance characteristics of the original 
dataset while, at the same time, it makes the simulation value close to the real 
one. According to Wang and Zhang [23] and Chainey and Stuart [5], by 
generating multiple and unique interpretations that respect the spatial dataset, 
simulation generates multiple configurations of possible realities, a realism issue, 
based on the search window Gaussian distribution but not on the optimum 
estimation. Certainly, the greatest potential of geostatistical simulation lies in the 
production of uncertainty estimations for a given cutoff value and, therefore, the 
assessment of impact costs. 
     The uncertainty layout of the conventional Kriging software is closely related 
to OK variance, too. According to Soares [22], if the sum of the weights is one 
and the average estimation error equals zero then the Kriging error variance 
becomes n

2
O K i i 0

i = 1

σ = w γ ( x ,x ) + Ψ∑ , where Ψ equals the LaGrange multiplier of 

the OK system, wi is the OK weights and i 0γ(x ,x )  is the variance between the ith 
and the estimated point. Hence, if errors respect the ‘bell’ curve then real values 
will fall within the Kriging_predictor 2

OK2+− σ  interval for a 95% confidence 
level. However, uncertainty is not included with variogram estimation and, thus, 
prediction variance is underestimated. But even more critically, OK variance is 
not sensitive to local error for two major reasons: 1) It is based on the same 
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global variogram; 2) Distances among locations are the only relevant factor. OK 
variance is mainly a geometry-dependent measure heading the assumption that 
an OK true error map is a better substitute. OK variance is too much of a spatial 
operation. 

2.2 The Moran I 

In order to understand the Local Confidence Interval of SAKWeb©, the first free 
Internet application for spatial interpolation and spatial autocorrelation indices 
(Negreiros [11], Negreiros and Painho [15]), the Moran I is reviewed here since 
this measure is an inherent element of it. Under the spatial independency null 
hypothesis, the global Moran I index (see equation 1 where 

−

x symbolizes the 
overall mean, Wij is the weight of matrix W between ith and jth, n represents the 
total number of observations, xi and xj are ith and jth sample value while S0 equals 
the sum of the spatial weights) is evaluated by measuring the covariance between 
attributes at each place and near sites towards the overall mean. If both 
neighbouring values are above or below the mean (similar high-high or low-low 
values), the product is positive, reflecting the presence of a similar spatial 
autocorrelation. Otherwise, the product of the two mean deviations will be 
negative (unrelated high-low and low-high values), indicating a non-positive 
one. 

           

(1)

 

     Its output domain varies between +1.0 (similar patterns were found) and –1.0 
(nearby areas tend to be dissimilar) although a zero outcome for all 
neighbourhood distances denotes a pure nugget-effect situation for Kriging. For 
Wong and Lee [24], the mean of Moran I equals E(I)=-(n-1)-1 although this value 
will tend to zero as the sample size increases. In addition, the Moran I 
cumulative peak should be analogous with the range for the sample variogram 
and it can be expected to have a similar value. If these ranges do not match then 
larger-scale patterns were not modelled for larger lags by the variogram  
(Skinner [21]). 

2.3 SAKWeb© strategy 

One new extension of SAKWeb© to enhance the local confidence interval is 
based on the local error variance as a true representative of the local pattern of 
spatial continuity. Since the shape of the variogram is the same for the whole 
study region, a hard assumption, to rescale the local variogram should be 
computed to reflect local spatial variability. According to Isaaks and Srivastava 
[7], the error variance of a relative variogram with a sill of one multiplied by the 
conventional local variance achieves this aim in a proper way. In practical terms, 
to produce a variogram sill of one, thus, each coefficient of the original model  
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Figure 1: Moran I correlogram of SAKWeb©. 

should be divided by its sill. With regard to the conventional local variance 
assessment, moving neighbourhood statistics can help this estimation, especially 
with the close relationship between local mean and local variance. 
     Under SAKWeb©, this local variability is computed based on the local error 
variance whose local range equals the greatest value between the lag with the 
highest and second highest found in the Moran I correlogram (Negreiros et al. 
[13], Negreiros and Painho [14]). That is, the global Moran I is computed for ten 
lag distances whose search range is between 3/2 of the average distance among 
samples, a nearest neighbourhood analysis parameter, and the variogram range. 
The goal is to identify the best scale of autocorrelation within spatial data. This 
happens because the proportional effect is not always true for all datasets and it 
is central that this factor becomes the most accurate as possible. According to the 
First Law of Geography, it is expected that this scale range varies between the 
first and third lag distance as Figure 1 (above) demonstrates. 
     In this particular case, the grasshopper 1995 infestation dataset of Colorado 
was used for layout purposes only. The highest spatial autocorrelation index 
achieved was at the second lag. Once the local error variance has been assessed 
based on the samples values that are within the range of the estimation point, 
then each local standard deviation uncertainty is multiplied by the rescaled OK 
error variance (see figure 2). The top left image shows the Ordinary Kriging 
variance based on a rescaled variogram, the top right presents the conventional 
local error variance while the bottom figure presents the local standard deviation 
estimated. 
     As expected, SAKWeb© offers the Normal 80%, 90% or 95% confidence 
intervals for three OK models (OK with nugget-effect, OK without nugget-effect 
and OK with a micro-scale component) but reflecting local conditions, as figure 
3 shows. As expected, the user can setup a threshold limit (in this case, 0.5 
grasshoppers per m2) to assess the highest and lowest confidence plume 
(Negreiros [12], Negreiros et al. [16, 17]). 
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Figure 2: Estimation of the local standard deviation for the same spatial 
dataset. 

3 Conclusions 

Although mathematics will always have limitations when describing space 
events because Earth has single and complex terrain processes (Negreiros and 
Painho [15]), new applied space formulations are becoming crucial. This 
happens because the kernel of geography is to think geographically, that is, to 
study spatial distribution phenomena and their correlations. 

Thus, traditional statistics must be reformulated to properly account for 
spatial correlation and spatial heterogeneity within georeferenced data. In 
addition, users now have the ability to collect and to explore large amount of 
georeferenced data. With the advent of Web technology and modern wireless 
computing, it has become necessary to develop a W3 software for interpolation 
(a major inspiration for SAKWeb©) to understand the often complex spatial 
autocorrelation that exist among the samples collected in space. 
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Figure 3: The third step process of the Local Region Confidence Interval 
option of SAKWeb©. 

     Another relevant issue lies in the implementation philosophy of theoretical 
research papers produced by SAKWeb©, e.g., the local confidence interval 
presented here. Quite often, the research papers end up on a library shelf without 
any application for the common GIS user. It is essential for theoretical research 
to be reflected in practical outcomes. OK variance is an index that does not 
depend on data although most users demand the use of this feature within 
geosoftware. Therefore, OK variance uncertainty was taken into consideration 
via a variogram rescale procedure with a sill equal to one. The Moran I 
correlogram must be produced in order to uncover the optimal highest scale of 
spatial autocorrelation among samples. Based on that lag distance, it is possible 
to compute the local conventional variance for each estimated point. By 
multiplying both factors and for a particular threshold value and confidence 
level, it is possible to draw two final maps for the study region that layout the 
highest and lowest plume of contamination, for instance. Although the OK 
interpolation procedure is not affected, certainly this local confidence interval 
can improve results when compared with traditional software. 
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