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Abstract 

This contribution analyzes the problem of selecting the desirable characteristics 
of a study area when using geo-information for natural risk assessment. Shape, 
boundary, density of detail of the study area and the distribution of hazardous 
occurrences can be fundamental in conditioning the estimation of values in a 
map of expected risk. A study area in the Basque Country of northern Spain is 
used in which previous studies produced maps of risks for linear infrastructures, 
land uses and buildings, from thousands of shallow translational landslides. The 
area is reconsidered here in terms of five telescopic sub-areas corresponding to 
different neighbourhoods of the landslide occurrences. The results of the 
corresponding hazard predictions are interpreted via prediction-rate tables and 
curves obtained from blind tests, i.e., prediction maps obtained using only part of 
the occurrences cross-validated with the distribution of the remaining 
occurrences. The subsequent introduction of socioeconomic thematic maps and 
scenarios enables the derivation of risk maps based on the prediction rates, the 
hazard maps and the socioeconomic indicator values. The comparison of the risk 
maps from the different study-area datasets is used to assess their impact on risk 
values and to provide guidance on how to perform the selection maintaining 
greater significance. A critical issue is the loss of significance when reducing 
study area neighbourhoods closer or further away from the hazardous locations. 
The application is an example of a general purpose spatial predictive modelling 
processing strategy for which dedicated software has been developed. 
Keywords: study area selection, landslide hazard prediction, risk assessment, 
blind tests, spatial prediction modeling. 
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1 Introduction 

This contribution explores one aspect usually ignored in studies of spatial 
prediction modelling: the statistical properties of a study area that make it worth 
using for the modelling.  Today, many an application has been made to predict 
natural hazard and particular attention has been paid to landslide processes as 
causes of damage to human activities and assets.  The use of geo-information 
technology has encouraged the construction of spatial databases from which the 
distribution of occurrence of hazardous events is inductively related (Alexander 
[1]) with that of contextual map data layers considered as relevant to, or typical 
of, or even causal factors to the occurrences. 
      Examples can be seen of studies of different area extensions with diverse 
densities of landslide occurrences (van Westen et al. [2], 21 km2; Zêzere et al. 
[3], 17 km2; Coe et al, [4], about 315 km2, or Cardinali et al. [5], 79 places 
surrounding known landslides within a 8456 km2 region; and Remondo et al. [6], 
a 500 km2 area). 
     Generally, no particular statistical justification is used (put forward) for a 
study and mainly reasons of geomorphologic or physiographic uniformity, 
cartographic unit delimitation or sociologic relevance are the arguments used to 
justify the selection of study area and of its boundaries.  Nevertheless, the 
geometrical statistical properties of a study area may be critical in the 
establishment of the spatial relationships supporting the derived ranking of 
hazard classes. 
     How could or should one proceed in selecting a representative or effective 
study area boundary in a specific case study? What is the zone of influence of the 
hazardous occurrences and the respective typical setting to be mapped from a 
spatial database? How confident are we that the database provides significant 
relationships between the occurrences and their spatial context? Does it contain 
all the variability to identify typical hazardous settings? What criteria have we 
used to select the study area, its shape and extension? 
     To help answering at leas in part those questions, a study area database from 
earlier landslide hazard analyses has been used. It was artificially modified to 
represent different circular neighbourhoods of a fixed number of landslide 
locations.  Following a description of the study area (previously analyzed for 
hazard prediction and risk assessment), five different sub-areas are generated of 
increasingly larger landslide neighbourhoods.  The results of estimated 
probability of occurrence are obtained for each sub-area and compared, 
maintaining consistence between the experiments.  Subsequently, using the same 
scenario of future processes and human impact, the corresponding risk 
assessments and risk maps are derived.  Following a comparison of the risk 
values and rankings, a discussion is made of the results and the ensuing 
opportunities for further work in risk analysis. 

2 Study area, sub-areas and the problem 

The study area, located in Figure 1, is part of a spatial database for the lower 
Deba valley in the Basque province of Guipúzcoa in northern Spain. The 
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database has been the subject of a number of hazard studies (Remondo [7]; 
Remondo et al. [8], [9]). It has been later expanded with addition of 
socioeconomic information to enable risk assessment (Remondo et al. [6]; 
Bonachea [10]).  It covers approximately 140 km2, with elevations ranging 
between 0 m and 700 m a.s.l., and the main annual rainfall is 1500 mm.  

  

 

Figure 1: Location of the Deba Valley Study area in the Basque Country, 
northern Spain. 

     Geologically, the terrain consists of moderately folded and faulted limestones, 
marls, claystones, sandstones, flysch facies and volcanic rocks of the Cretaceous 
and Paleogene of the Basco-Cantabrico Pyrenees. Slopes are generally steep 
(average slope gradient is 22º) and there are surficial deposits of different 
composition and thickness that determine the occurrence of many hundreds of 
landslides triggered by intense rainfall episodes.  Extensive field surveys and 
photo-interpretations of different flight coverages allowed mapping landslides of 
different dynamic types in temporal groups (Remondo et al. [9]). 
     For this study 1206 shallow translational landslides and associated flows were 
considered: 300 that occurred past 1997 and 906 pre 1977.  Because some were 
reactivated after 1977, a subtotal of 1123 landslides was eventually used, with 
only 217 considered as post-1977. 
     The digital database consisted of rasterized images of 1886 columns x 1555 
rows of 10 m pixel resolution.  Within that image space the area of concern 
occupied 1,393,541 pixels.  The average size of the landslide main failure is 
about 400 m2, and the location of each was assigned to a single pixel of 10 m 
resolution. Besides the two digital images containing the location of the 1123 
landslides (906 pre-1977, and 217 post-1977), shown in Figure 2, six “causal 
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factor” data layers were used: three continuous ones (elevation, slope and aspect) 
and three categorical ones (geology with 28 units, vegetation-land use with seven 
units, and thickness of surficial deposits with three units, between 0.5 and          
3.0 m).  
     To obtain sub-area databases corresponding to landslide neighbourhoods of 
different radii, the image with the 1123 landslide pixels was spatially 
transformed to generate circular pixel patches around the pixel location of the 
landslides.   
     Different study areas were obtained sub-setting the images of the “causal 
factors” so that only the values corresponding to the patches were considered. 
The following five study areas were generated: named Mask 1 (the initial study 
area), Mask 2 (neighbourhoods of diameter 7 pixel), Mask 4 (of 11), Mask 6 (of 
13), and Mask 9 (of 21).  Their statistics is shown in Table 1.  In this manner, 
study areas with different extensions and relative percentage of landslide pixels 
were obtained (0.08, 0.51, 1.10, 1.53, and 3.52%, respectively).  Purpose of the 
transformation was to study their effect on the predicted hazard values, the 
ensuing estimates of probability of occurrence, and finally on the risk values 
assessed. 

 

 

Figure 2: The distribution of hazardous events in the study area during two 
successive periods of six and four years, respectively.  The 
distribution of the older period events was used for predicting and 
that of the later period was used for cross-validation. 

Table 1:  Masks, study areas and percentage relative of landslides. 

Areas Number of pixels % of landslides 
Mask 1 
Mask 2 
Mask 4 
Mask 5 
Mask 9 

1,399,341 
31,867 
73,424 

102,480 
218,323 

0.08 
3.52 
1.53 
1.10 
0.51 

906  
1991-1997 

6ys 

217/300 
1997-2001 

4ys 

1123 shallow translational 
slides and associated flows
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3 The analytical strategy  

Prerequisite to spatial prediction modelling are several basic assumptions and 
related scenarios that justify its application.  They relate to: (1) the significance 
of the database; (2) the distribution and type of hazardous events; (3) a scenario 
for the distribution of future events; (4) a scenario for the empirical validation of 
the prediction results; and (5) a scenario for the interpretation of the validation 
via cost-benefit analysis. 
     A spatial database must be assumed to be available that contains all or most 
or even a sufficient amount of the information about the past hazardous events 
and on their spatial setting such as causal factors or characterizing parameters. 
     The distribution of the past hazardous occurrences in time and in space, 
including their triggering factors, intensities and dynamic type is assumed to be 
similar to, or comparable with, that of future events for a same time interval of 
similar length. 
     The impact of the future hazardous events is similar to or comparable with 
that of the past events. 
     The prediction results, i.e., the hazard map, generated by using all available 
hazardous events can be evaluated by mean of an additional prediction obtained 
by subdividing the past hazardous events into two groups. One group is used for 
predicting, and the other for empirically cross-validating the second prediction 
results, a second hazard map.  It means that the “validity” of the first prediction 
is assumed to correspond to that of the second prediction obtained by the “blind 
test.” 
     Once the empirical validation is performed, the statistics obtained for the 
several hazard classes should be evaluated in terms of cost-benefits to identify 
the hazard classes having greater reliability. 
     As a logical consequence of the assumptions and scenario just described, the 
following 3-stage strategy can be set up.  
     Stage 1.  Select a prediction model out of a few that may be applied, use all 
available hazardous events of a given type and all causal data layers, and obtain a 
first prediction map.  The map will have ordered levels of hazard for equal area 
classes as proportions of the study area (e.g., 0.5%, 1.0%, etc.).   
     Stage 2.  Interpret the prediction results obtained in Stage 1 by subdividing 
the past hazardous events into two or more groups, to obtain, using the same 
prediction model, a new prediction map and its validation, respectively. The 
subdivision could be obtained by time partitions, if the hazardous events can be 
separated into an older and a more recent set of events.  Should such a time 
partition not be possible, a random partition into two halves of the occurrence 
can be used, for instance using the first random half for predicting and the 
second half for validating.  Another form of random partitioning the past 
occurrences is the take-one-out (or take-a-group-out) to see how well a 
prediction that uses the remainder fares. In such cases what is predicted is the 
next occurrence or the next group, without a specific time connotation.  The 
results of the validation of the classes in the second prediction are in the form of 
tables, histograms and cumulative curves that express the relative prediction 
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power, assumed to be also the power of the first prediction.  Once a scenario on 
the spatial impact of the future hazardous events is selected, it is possible to 
estimate the probability of occurrence of the future hazardous events (for 
instance assuming that in the future as many events will occur as the ones 
observed in the past).  Such probabilities of occurrence for each predicted equal 
area hazard class can be scaled down to smaller unit areas such as pixels in the 
spatial database for subsequent risk analysis.   
     Stage 3. Use the additional socioeconomic indicator data layers about 
population density distribution, dwellings, infrastructures, activities and land use 
classes with their associated values, expected losses and vulnerabilities, to 
resolve for each one the risk equation,  

 
R = H * V * E,           (1) 

 
where R is the risk (€/year), H is the predicted hazard (0-1/year), V is the 
vulnerability (0-1) and E is the element value (€) exposed to the risk.   
     For each type of risk use the hazard map from the first prediction, assign to 
each pixel in each class the probability of occurrence obtained by the second 
prediction and then compute the risk values per pixel. 
     Various spatial prediction models can be used to establish a spatial 
relationship between the distribution of the hazardous events (points, lines or 
polygons) and that of the supporting or causal factors. Chung and Fabbri [11,12] 
discuss a mathematical framework for models based on fuzzy sets, likelihood 
ratios, linear and logistic regression and Bayesian probability. Here we have used 
the empirical likelihood ratio, ELR, as proposed by Chung [13].  The ELR 
highlights the difference between a function of the conditional probability of 
combinations of causal factors in the presence of hazardous events and a function 
of the conditional probability of combinations of causal factors in the absence of 
such events.  

4 Predictions for study areas and impacts of neighbourhoods 
on risk maps 

The initial database of study area Mask 1 was reduced in extension to generate 
the databases for study areas Mask 2, Mask 4, Mask 5 and Mask 9. 
     Landslide hazard (the term susceptibility is used as synonym) Stage 1 
prediction maps were generated for all the study areas, using first all the 1123 
landslides, and successively using only the 906 pre-1997 landslides, shown in 
Figure 2.  Figure 3 shows the Stage 2 second prediction hazard map for the Mask 
1 area, with the distribution of the 217 validation landslides.  The cumulative 
prediction-rate curves for the Stage 2 predictions and cross-validations are 
shown in the diagram of Figure 4.  There the horizontal axis provides the relative 
proportions of the study areas classified as hazardous as classes in decreasing 
order of predicted values of likelihood ratios.  On the vertical axis are the 
corresponding cumulative proportions of the 217 validation landslides.  The 
diagram provides a measure of how “good” the predictions are.  While a 
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distribution of values on the diagonal line connecting points (0, 0) and (1,1) 
indicate a random distribution, one away from it indicates that the validation 
landslides tend to cluster within classes with high predicted values.   
 
 

 

Figure 3: The second prediction map obtained using the distribution of the 
906 landslides during 1991-1997, and the distribution of the 217 
landslides that occurred during 1997-2001.  The rectangular inset 
will be used to visually compare prediction maps of the other study 
areas. 

     Clearly, the relative significance of the prediction-rate curves is much greater 
for Mask 1 to decrease drastically from Mask 9 to mask 2.  A measure of 
effectiveness of the prediction-rate curve in terms of cost-benefit analysis was 
used by Chung and Fabbri [14] to isolate the parts of a prediction-rate curve with 
inclination acceptably steeper than that of the diagonal line.  In this case and only 
for the Mask 1 prediction, the effective classes correspond to the most hazardous 
10% of the study area (it predicts 47% of the “future” landslides), and the least 
hazardous 30%, as shown by the two black horizontal bars in Figure 4.  As a 
consequence, we can see that reducing the size of the landslide neighbourhoods, 
the distribution of predicted landslides in the classes approaches randomness.   
     We can fit a continuous line to the prediction-rate curve and convert the 
prediction rates into probabilities of occurrence, as shown in Figure 5, by the 
following expression that computes values for a pixel x: 

ˆPx = 1 – [1 – pγ]nα/nγ
                                  (2) 
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Figure 4: The cumulative prediction-rate curves for the five study areas 
corresponding to the different landslide neighbourhoods.  The 
black bars on the horizontal axis identify the effective portion of 
the curve for the Mask 1 study area. 

 

Figure 5: The fitted prediction rate curve for the Mask 1 study area and the 
respective curve for the probability of occurrence. 
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where, nγ is the cumulative number of pixels in hazard classes whose levels are ≥ 
to the class; nα is the number of pixels in the expected future landslides; and pγ is 
the cumulative portion of the landslides in the validation group of the hazard 
classes whose levels are ≥ to the class (from the prediction-rate table). 

Table 2:  Probabilities of occurrence for study areas Mask 1 and Mask 2. 

 
     Assumptions that allow the computations are: (i) a four year time partition is 
acceptable; (ii) there is uniformity of physical settings in time; and (iii) there is a 
similarity of triggering factors between the two sets of landslides.  Table 2 shows 
the probability of occurrence for the two extreme study areas Mask 1 and Mask 
2.  There, for corresponding equal area classes we can see the distribution of 
validation landslides, and the related probability of occurrence.  Clearly, for the 
Mask 2 area the probabilities of occurrence are two orders of magnitude larger 
than those for Mask 1. 

Mask 1 
Classes % area % landslides Probabilities 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
70 
100 

0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
005 
0.2 
0.3 

0.2949 
0.1649 
0.0761 
0.0921 
0.0530 
0.0530 
0.0461 
0.0161 
0.0346 
0.0230 
0.1245 
0.0207 

6.825E-04 
5.063E-04 
3.759E-04 
2.792E-04 
2.075E-04 
1.542E-04 
1.147E-04 
8.526E-05 
6.340E-05 
4.715E-05 
1.444E-05 
2.519E-06 

Mask 2 
Classes % area % landslides Probabilities 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
70 
100 

0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
005 
0.2 
0.3 

0.0714 
0.0507 
0.0507 
0.0369 
0.0507 
0.0737 
0.0461 
0.0484 
0.0253 
0.030 

0.2189 
0.2972 

1.210E-02 
1.096E-02 
9.937E-03 
9.006E-03 
8.163E-03 
7.399E-03 
6.706E-03 
6.077E-03 
5.508E-03 
4.992E-03 
3.368E-03 
1.885E-03 

 © 2008 WIT PressWIT Transactions on Information and Communication, Vol 39,
 www.witpress.com, ISSN 1743-3517 (on-line) 

Risk Analysis VI  37



Table 3:  Land use class values and vulnerabilities. Values in €/100m2 of 
land, 1 pixel. 

Code Land use class Value  Vulnerability 
1 
2 
3 
4 
5 
6 
7 

Very dense forest 
Dense deciduous forest 
Half open deciduous forest 
Very dense coniferous 
Shrubs and bushes 
Grasslands and cultivation 
Areas without vegetation 

40 
30 
20 
64 
10 
100 
0 

0.1 
0.2 

0.35 
0.32 
0.1 
0.6 
0 

 
 

Figure 6: The land-use risk map obtained for study area Mask 1. 

     In this application the probabilities of occurrence obtained for the five study 
areas, and the Stage 1 prediction maps were used to assess the risk to land uses.  
For seven classes of land use a land-use map (not shown here) monetary values 
and vulnerabilities were obtained as shown in Table 3.  Expression (1) was used 
to obtain risk values per pixel and then to generate risk maps like the one in 
Figure 6 for the Mask 1 study area.  Figure 7 provides a visual comparison for a 
sub-area, marked in Figure 6, of risk maps for Mask 1, Mask 9 and Mask 5.  
Clearly, the risk values obtained tend to increase when reducing the study areas, 
from about 0.06 to 0.37 €/pixel, in this case. 

 © 2008 WIT PressWIT Transactions on Information and Communication, Vol 39,
 www.witpress.com, ISSN 1743-3517 (on-line) 

38  Risk Analysis VI



     These experiments indicate that to obtain a meaningful hazard prediction and 
risk assessment, it is critical to have a spatial database that captures a 
representative sample of landscape variability to identify classes in a study area 
that express the typical and recognizable setting of the hazardous events.  
Measures of the relative “goodness” of a spatial prediction can be easily obtained 
by cross-validation via blind tests, i.e., pretending that part of the known events 
are unknown and then using them as proxies for the future events. 
 

 
Figure 7: Visual comparison of part of the land-use risk maps for study areas 

Mask 1 in (A), Mask 9 in (B) and Mask 5 in (C). 

5 Concluding remarks 

In this contribution a study area previously used for landslide hazard prediction 
was artificially transformed into several study areas corresponding to landslide 
neighbourhoods of different radii.  It was done to study how the loss of 
significance varies with the decrease in study area size.  It could be seen that the 
estimated probability of occurrence increases two orders of magnitude when the 
study area is reduced to 7-pixel circular neighbourhoods of the known hazardous 
events.  
     This type of analysis, based on cross-validation strategies is considered 
important in selecting the study area characteristics for a reliable risk assessment.  
Furthermore, uncertainty analysis via cross-validation can be performed to 
demonstrate that uncertainty also varies in a similar manner.  For this 
contribution SPM-SRA software systems for Spatial Prediction Modeling and 
Spatial Risk Analysis were used that are based on iterated cross-validations 
(SPM-SRA, [15]; Chung and Fabbri, [16]). 

A

B 

C
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