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Abstract 

This paper presents a time series study of an alpine ecosystem in the Big Pine 
Creek watershed in California’s Eastern Sierra Nevada Mountain’s. Raw Landsat 
data covering the years 1984 through 2011 is converted to observed surface 
reflectance and analysed for trends. Analysis of environmental data indicates a 
definite warming trend while observed surface reflectance shows a general 
decline for the study area over this time period. While declining reflectance in 
the visible bands suggests an increase in surface vegetative cover, the fact that 
the IR band also shows declines suggests a potential change in vegetative 
composition towards species with less structural complexity. This study provides 
a useful insight into the ecological response of the Big Pine Creek watershed. 
Keywords: Landsat, remote sensing, alpine watershed, climate change, time 
series Mann-Kendall trend analysis. 

1 Introduction 

A significant portion of fresh water supplies are tied to glacial and alpine 
ecosystems that are vulnerable to variations in the earth’s climate (Barnett et al. 
[1]). Since these regions exist at the boundaries of climate zones such as the 
higher and lower latitudes and at high elevations where several ecotones may 
occur in a small geographic area they will witness the first signs of climate 
change impact on the environment. Biomes that populate these habitats are 
highly susceptible to changes in environmental conditions (Lindner et al. [2]). As 
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the environmental characteristics of individual ecosystems change, the 
physiological processes dependent on those environmental parameters also 
change, resulting in variations in the spectral response of both soils and 
vegetation.  
     We hypothesize that higher temperatures combined with increased 
atmospheric CO2 levels will increase photosynthesis resulting in increased 
biomass; provided other essential resources are not limited (Skre and Naess [3]). 
The spectral characteristics of vegetation enable us to analyze ecological 
properties using remote sensing instruments such as the Landsat Thematic 
Mapper (TM). Vegetation has characteristic spectral responses that correlate to 
variation in vegetative cover and plant health such as low red reflectance due to 
chlorophyll absorption and high near-IR reflectance due to the reflectance of the 
internal structures of the canopy (Wessman [4]). Soil also demonstrates unique 
spectral characteristics depending on properties such as its moisture, organic 
matter content and texture (Jackson et al. [5]). Lower soil moisture content, a 
possible indicator of water stress in vegetation, will cause higher surface 
reflectance in the mid-IR region that can be detected using Landsat data (Musick 
and Pelletier [6]).  
     In this paper we examine an alpine watershed using time series analysis of 
Landsat imagery. The Landsat imagery is processed to derive observed surface 
reflectance values. We then apply a statistical approach to determine the 
presence of any trends in the data that would validate the hypothesis of increased 
vegetation resulting from higher temperature and atmospheric CO2 levels. We 
present this information by first describing the study area and the data used in the 
analysis, we then discuss the research approach and methods used to collect and 
process the data, followed by our results and conclusions. 

2 Study area and data 

This section describes the study area and the data used in the analysis. 

2.1 Study area description 

Figure 1 below shows the Big Pine Creek watershed located in California’s 
Eastern Sierra Mountains. Big Pine Creek is a major tributary to the Owens 
River which is a significant source of fresh water for Los Angeles. The Owens 
River valley straddles the Great Basin and Mojave deserts with vegetation 
consisting primarily of pine forests at higher elevations and xeric species at 
lower elevations. Areas bordering streams and the Owens River are primarily 
grass dominated meadows (Elmore et al. [7]).  Elevation within the watershed 
increases from East to West with the higher regions dominated by barren rock 
and woodlands with the lower regions dominated by mixed desert shrubs. 
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Figure 1: Study area location showing the boundary of the Big Pine Creek 
watershed. 

2.2 Data 

The data in this study includes Landsat spectral reflectance data and PRISM 
generated meteorological data as is described below. 

2.2.1 Spectral data 
The Landsat 5 TM imagery used in this analysis was acquired for 28 dates in the 
July time frame from 1984 (year of launch) through 2011 (year turned off). For 
this analysis, only Landsat 5 TM imagery was used to ensure consistency of the 
data. Most of the imagery used in this analysis is from Path 42, Row 34 with four 
of the images from Path 41, Row 34. Both image ID ground swaths cover the 
entire study area. The imagery used in this study was obtained from the 
EarthExplorer web site operated by the United States Geological Survey (USGS) 
http://earthexplorer.usgs.gov/ [8]. The TM sensor collects data in six reflectance 
bands in the visible, near infrared and mid infrared regions and one thermal 
band. This information and additional detailed specifications on the TM sensor is 
found on the Landsat website, http://landsat.gsfc.nasa.gov/about/tm.html [9]. 

2.2.2 Meteorological data 
Meteorological data examined in this study is obtained from the University of 
Oregon’s Parameter-elevation Regressions on Independent Slopes Model 
(PRISM) web site http://www.prism.oregonstate.edu/ [10]. According to this 
website, PRISM data are modeled estimates based on point data and a digital 
elevation model and is available for the entire continental US at 4 km resolution. 
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     All 30 sample sites in this study fall within 5 PRISM grid cells as shown in 
Figure 2. Figure 2 also shows the most abundant land cover classes present in the 
watershed in addition to the surface water bodies present in the upper elevations. 
There are 34 land cover classifications with the ten most abundant covering 93% 
of the total surface area.  
 

 

Figure 2: Land cover classification of the study area and location of sample 
sites and the PRISM meteorological cells. 

3 Research approach and methods 

This section contains a description of our research approach and the 
methodology we used to collect and process the data. 

3.1 Research approach 

This study examines how the spectral response of the watershed has changed 
over the last 28 years. The goal is to determine if there are any significant trends 
in the data that would suggest climate change impacts to the vegetation in the 
study area have already occurred. Since the period of maximum leaf area index 
generally occurs in the mid-June to mid-August time frame (Gond et al. [11]), 
only imagery in the July time frame was considered for this analysis in order to 
minimize the impacts of the phenological cycle on the reflectance data. In order 
to ensure a representative sample of numerous vegetative species present in the 
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watershed, three sample sites at different elevations, from each of the ten most 
abundant land cover classifications are used for a total of 30 sample sites. 
Landsat data for each site is processed and converted to observed surface 
reflectance. A time series trend analysis is then performed to identify any 
statistically significant trends in the data that would suggest changes in the 
amount, health, or composition of vegetation in the watershed. 

3.2 Research methods 

The research methodology consists of data collection; data processing; and 
statistical analysis. Each step is described below. 

3.2.1 Data collection 
The data analyzed in this study includes the spectral response measured by the 
satellite in each of the six reflective bands of the TM sensor. Geometric pixel 
registration errors are generally below 0.5 pixels (Schueler and Salomonson 
[12]). To account for these errors, the pixel values for each sample site were 
resampled by averaging the eight adjacent pixel values along with the sample 
site pixel value. In order to perform a temporal study comparing the 
physiological changes over time at each of the sample sites, the raw Landsat data 
was converted to observed surface reflectance values for each year of the study 
period. This process involves first converting the digital numbers to at-sensor 
radiance values, then transforming the radiance to top of atmosphere reflectance 
and finally, performing an atmospheric correction to obtain observed surface 
reflectance (Chavez [13]). 

3.2.2 Data processing 
The raw Landsat imagery was processed to observed surface reflectance by first 
converting the digital numbers to at sensor radiance values by removing the gain 
and offset caused by the sensors themselves Chavez [13]. Following the methods 
developed by Chander and Markham [14], the spectral radiance at the sensor (L) 
is determined using  
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where Qcal is the calibrated digital number, L is the spectral radiance at the 
sensor’s aperture, in W/m2•sr•m, LMax  is the spectral radiance scaled to QCal 

max,  LMin   is the spectral radiance scaled to QCal min, P is the unitless planetary 
reflectance, L is the spectral radiance at the sensor’s aperture, d is the earth sun 
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distance in astronomical units, ESUN is the mean solar exoatmospheric 
irradiances, s is the solar zenith angle in degrees (Chander and Markham [14]). 
     Observed surface reflectance is then determined using the “Dark Object 
Subtraction” (DOS) method developed by Chavez [13] which is based on the 
assumption that radiance seen at the satellite for “dark” pixels (i.e. deep water) 
result purely from atmospheric path radiance. This allows us to process imagery 
where atmospheric column data is not available (generally pre-2000). For this 
analysis DOS is performed using the Cos  or “COST” method developed by 
Chavez [13]. First the minimum radiance is determined using 
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the theoretical radiance of a dark object (assuming a 1% reflectance) is then 
calculated using  
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A haze correction factor is then calculated using 
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3.2.3 Statistical analysis 
Statistical analysis is used to test our hypothesis that recent climate change has 
altered the vegetative composition of the study area. The non-parametric Mann-
Kendall (MK) trend test is used to establish the presence of a trend in the surface 
reflectance observations and meteorological data over the last 28 years. This 
analysis looks at the sums of the signs of the differences between the data sets 
and calculates an “S” statistic with the following properties: for S < 0 (values are 
decreasing over time); for S > 0 (values are increasing over time). The 
magnitude of the S-statistic is a measure of the strength of the trend. S values of 
+ or – 100 indicate a statistically significant trend with a p value of < 0.05. This 
means the null hypothesis of no-trend in the data can be discarded with the risk 
of committing a Type II (rejection of a true null or H0) error at less than 0.01%. 
The MK S-statistic is calculated using 

  


 


1

1 1

n

i

n

ij
ij xxsignS , (7) 

380  River Basin Management VII

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 172, 2013 WIT Press ©



where n is the number of observations and xi (i = 1…n) are the independent 
observations (De Beurs and Henebry [15]). These calculations are carried out in 
Excel using the XLSTAT add-in statistical package. This program generates the 
S statistic as well as the probability (p) value which is used to quantify the 
statistical significance of the trend.  

4 Results and discussion 

This section presents the results obtained from our analysis of the spectral 
response and meteorological data. Correlations between the spectral response 
and meteorological data as well as confidence levels are briefly discussed. 

4.1 Spectral data 

The left side of Figure 3 below shows the observed surface reflectance for each 
of the six Landsat TM reflectance bands over the 28 year study period averaged 
for all 30 sample sites. The right side of Figure 3 shows how each of these 
spectral bands has trended for each of the four primary land cover types in the 
study area.  
     The declines in the blue (band 1), green (band 2), and red (band 3) regions of 
the spectrum all suggest increased absorption from increased chlorophyll. With 
the larger reductions in the blue and red regions and less reduction in the green 
region matching what would be expected with increased vegetative ground cover 
due to the strong blue and red chlorophyll absorption features in vegetation. 
However, since the near-IR (band 4) region also shows significant decline, the 
increase in vegetative surface cover, suggested by the decrease in the visible 
region, is structurally less dense. Two possible explanations are that there is 
simply more new growth which has yet to develop the structural complexity of 
existing vegetation, or the new growth is composed of different species with less 
complexity. 

 

Figure 3: Landsat 5 TM observed surface reflectance averaged over all 30 
sample sites and trends in the observed surface reflectance of each 
Landsat 5 TM reflectance band for the four land classes (Barren, 
Woodland, shrubs, and developed). 
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     While the barren, woodland, and shrub land types all show a consistent 
pattern with smaller declines in the green (band 2) region and larger declines in 
the near-IR (band 4), the developed areas show a different pattern across the 
spectrum with significant declines in the red (band 3) and mid-IR (bands 5  
and 7) while showing much lower declines in the near-IR (band 4).  
 

 

Figure 4: Historical Google earth imagery of one of the developed land class 
sites showing increases in trees and shrubs over the study period. 

     This difference in the developed areas can be explained by the significant 
increase in trees and shrubs at one of the developed area sample sites, validated 
by historical satellite imagery as shown in Figure 4 above. The increase in 
vegetative cover as well as structural complexity results in lower visible band 
reflectance and increased near-IR reflectance. 
     Table 1 shows the results of the trend tests for each of the Landsat 5 TM 
bands. For the average of band 1 data, the S value of -78 indicates values are 
declining over time. The p-value of 0.130 indicates that the risk of rejecting the 
null hypothesis of no trend is only 12.95%. Similarly, for band 2 the risk of 
rejecting the no trend null hypothesis is 42.2%; band 3 it is 6.61%; band 4 it is 
5.51%; band 5 it is 11.5%; and for band 7 the risk is 17.49%.  
     Figure 5 shows the observed surface reflectance trends for each of the 30 
sample sites arranged by their elevation. The data shows that of the 180 observed 
surface reflectance data sets (30 sites x 6 reflectance bands), 153 have negative S 
values indicating lower surface reflectance over time, while 28 data sets are 
positive, indicating increasing surface reflectance over the time period of the 
study (1984–2011). Looking more closely at the strength of the trends, 58 of the 
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data sets (32%) show a statistically significant negative trend (p < 0.05), 24 data 
sets (13%) demonstrate likely negative trend (0.1 < p < 0.05) and 3 data sets 
show likely positive trends (0.1 < p < 0.05).  

Table 1:  Observed surface reflectance trend statistics. 

Band MK-S 
Value 

p x   CI 

1 (0.45-0.52 m) -78 0.130 0.085425 0.007659 ±0.003024 
2 (0.52-0.60 m) -42 0.422 0.120744 0.009910 ±0.003913 
3 (0.63-0.69 m) -94 0.066 0.198404 0.010816 ±0.004271 
4 (0.76-0.90 m) -98 0.055 0.260976 0.020168 ±0.007964 
5 (1.55-1.75 m) -82 0.110 0.271658 0.014862 ±0.005869 
7 (2.08-2.35 m) -70 0.175 0.220562 0.014828 ±0.005855 

 

Figure 5: Surface reflectance trends for each of the 30 sample sites for all six 
Landsat TM reflective bands. Sample sites are identified by their 
elevation in meters above mean sea level. 

4.2 Meteorological data 

The meteorological data analyzed in this study include the monthly average 
precipitation (PPT), monthly average maximum temperature (TMAX), the monthly 
average minimum temperature (TMIN) and the monthly mean dew point 
temperature (TDEW).  
     The most striking observation is the statistically significant positive trends in 
both the monthly average maximum temperature (TMAX) and monthly average 
minimum temperature (TMIN) over the time period of the study as shown in 
Figure 6 below. Of the 60 data sets analyzed, 65% of the TMAX and 85% of the 
TMIN values show statistically significant positive trends. For the precipitation 
data, 50% show negative trends and 50% show positive trends. Only 7% of the 
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precipitation data sets show statistically significant trends (negative). The dew 
point temperatures (TDEW), which are an indication of atmospheric moisture 
content show a preponderance of negative S values (85%) indicating a reduction 
in humidity levels. There are statistically significant declines in TDEW in the 
months of August and September. 
 

 

Figure 6: Monthly temperature trends for the 1994 through 2011 time period. 

4.3 Data correlations 

A comparison of the maximum, minimum, and dew point temperature climatic 
variables, and precipitation versus the surface reflectance values was performed 
using Kendall’s Tau () non-parametric rank correlation test. This test 
determines the strength of the link between two variables. For  = 1; the two 
variables are in perfect agreement. If  = -1; the two variables are in perfect 
disagreement (inversely correlated). And if  = 0, the variables are completely 
independent. Results of this test show most of the Landsat 5 TM bands have a 
small negative correlation with TMAX and TMIN.  
     Statistically significant correlations with reflectance data are found in 
approximately 11% of the data sets including PRISM cell 3 for TMAX in the near-
IR band 4 ( = -0.344, p = 0.011); and TMIN in the near-IR band 4 ( = -0.354, p = 
0.009) and mid-IR band 7 ( = -0.270, p = 0.46). Dew point temperatures show 
statistically significant negative correlations in PRISM cell 4 for the mid-IR band 
5 ( = -0.275, p = 0.042); and mid-IR band 7 ( = -0.365, p = 0.004) and in 
PRISM cell 5 for the red band 3 ( = -0.275, p = 0.042); the mid-IR band 5 ( = -
0.280, p = 0.038); and mid-IR band 7 ( = -0.307, p = 0.023). Precipitation 
shows statistically significant negative correlations in PRISM cell 5 for the blue 
band 1 ( = -0.347, p = 0.01); the green band 2 ( = -0.283, p = 0.036); the red 
band 3 ( = -0.310, p = 0.022); the mid-IR band 5 ( = -0.474, p = 0.0004); and 
mid-IR band 7 ( = -0.453, p = 0.001). 

4.4 Confidence levels 

Multitemporal satellite imagery is impacted by several factors including changes 
in sensor response, sensor stability, atmospheric effects, and illumination effects 
(Vicente-Serrano et al. [16]).  Radiometric uncertainty for the TM data is 
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approximately 5% (Chander et al. [17]). The confidence levels in the data are 
shown in Table 1 for the spectral reflectance data for each of the six reflective 
Landsat 5 TM bands averaged over all 30 sample sites. 

5 Summary and conclusions 

This study examined the changes in observed surface reflectance values at 30 
sample sites in the Big Pine Creek watershed over a 28 year time span from 1984 
through 2011. While reduced surface reflectance in the visible bands suggests 
increased vegetation cover, the fact that the near-IR reflectance is also decreasing 
suggests that any additional vegetative cover is structurally less dense. At one 
sample site, the near-IR is higher while the visible reflectance is lower indicating 
an increase in vegetative cover and density. This result is validated by historical 
satellite imagery showing increased tree and shrub cover over the last 28 years.  
     Average monthly minimum and maximum temperatures show statistically 
significant upward trends. Increased temperatures combined with the increasing 
levels of atmospheric carbon dioxide (CO2) suggest potential increases in 
photosynthetic activity as long as that process is not limited by other factors such 
as lack of water availability (Skre and Naess [3]). In areas without water or other 
nutrient resource limitations, these conditions are conducive for increased 
biomass resulting in stronger absorption in the visible region of the spectrum. 
The statistically significant declines in late summer dew point temperatures 
suggest a moisture deficit may be developing during the least rainy months of the 
year. However, while the near-IR reflectance would be expected to decline in 
moisture stressed vegetation, the mid-IR (band 5) is expected to increase (Todd 
and Hoffer [18]). The data in this analysis do not reflect increased mid-IR 
reflectance. The reduced mid-IR values we observe are actually an indicator of 
increased biomass since the mid-IR is highly reflective in barren areas and 
reduced in vegetated areas. All of these observations suggest an increase of 
ecosystem biomass with reduced structural complexity. 
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