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Abstract 

Concurrent relationships between climate indices and Australian spring rainfall 
have been used extensively to explain weather events. In order for climate 
indices to be useful for rainfall forecasting there must be relationships between 
their lagged values and rainfall. The methods currently used by the Australian 
Bureau of Meteorology for seasonal weather forecasting have limited capacity to 
exploit the often non-linear relationships that potentially exist between the 
lagged values for these indices and rainfall. This paper reports on the application 
of a method of forecasting based on the use of neural networks, a form of 
artificial intelligence. Neural networks facilitate the input of multiple variables 
simultaneously. The variables most useful for determining rainfall are elucidated 
by application of algorithms during the optimisation process. 
     Brisbane, the capital of Queensland, Australia, has flooded periodically and 
catastrophically. The neural network described in this study was used to forecast 
rainfall for three locations in the Brisbane River catchment one to three months 
in advance, including the 2011 flood event. Results are compared on the basis of 
root mean square error with output from the Australian Bureau of Meteorology’s 
general circulation model, POAMA. The Neural Network model shows 
considerable more skill. The Neural Network incorporates lagged values for key 
climatic indices and also rainfall and atmospheric temperatures. 
Keywords: rainfall, forecast, lagged climate indices, SOI, IPO, Niña 3.4, 
Brisbane, flood, neural network. 
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1 Introduction 

Brisbane, the capital of Queensland, Australia, flooded in 1841, 1893 and 1974. 
The Wivenhoe dam was built for flood mitigation and completed in 1985 but this 
dam did not prevent catastrophic flooding again in 2011. In fact, the dam was in 
part responsible for the extensive flooding in 2011 because when its structural 
integrity was challenged, large volumes of water were abruptly released [1]. The 
Brisbane City Council reported a clean-up bill of A$440 million (335.3 million 
Euro equivalent) [2] and insurance claims totalled approximately A$2.4 billion 
(1.83 billion Euro equivalent) [3]. In addition, there is a pending class action 
lawsuit, potentially the largest ever in Australia, with claims for damages 
estimated to exceed A$1 billion (0.76 billion Euro) [4]. 
     The Queensland Floods Commission of Inquiry [5, 6] was most concerned 
with forecasts from the Australian Bureau of Meteorology (BoM) in the week 
preceding the flooding. The focus of the present study, however, is on longer-
term rainfall forecasting from 1 month to 3 months in advance, potentially 
valuable information in the context of managing water infrastructure, such as 
Wivenhoe dam. 
     Rainfall variability in the Brisbane catchment is high [7], with alternating wet 
and dry decades [8]. The Interim Report Queensland Floods Commission of 
Inquiry [6] referred briefly to the seasonal forecast issued by the BoM in October 
2010, predicting a 75% chance of above median rainfall in south-east 
Queensland for the period November 2010 to January 2011, and an active 
cyclone season. Those briefings included statements that: there was a well-
established and quite strong La Niña pattern, that was more than ‘run-of-the-
mill’, which was expected to persist until at least March; there was a historical 
correlation between La Niña events and tropical cyclones in the Coral Sea; and 
above normal rainfall would continue over much of Queensland.  
     La Niña events can be measured through the climate indices Niña 3.4 and 
Southern Oscillation Index (SOI). In this study, we also use the Inter-decadal 
Pacific Oscillation (IPO), which is known to modulate phases of La Niña and 
rainfall [9–11]. Numerous studies attempt to relate individual indices to 
concurrent values of rainfall [12–18]. This can be valuable in terms of 
understanding causation of weather phenomena. For forecasting purposes, 
however, it is only lagged values that can legitimately be used as input [19–24], 
unless an independent model for forecasting a particular climate index is 
incorporated into a rainfall forecast. 
     The BoM relies on both statistical and dynamic systems to generate rainfall 
forecasts. Dynamic systems, such as general circulation models, use computer 
simulations that attempt to model physical processes in the climate system. This 
method can give seasonal rainfall predictions from 1 month up to a year in 
advance. The dynamic forecasting approach is more expensive to implement and 
operate than statistical climate prediction systems. Despite substantial research 
efforts and technological advances, sophisticated dynamic systems are still 
unable to consistently outperform simple statistical prediction systems [24].  

126  River Basin Management VII

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 172, 2013 WIT Press ©



     Statistical methods require the existence of sufficiently strong empirical 
relationships between rainfall and other input variables particularly climate 
indices. This requires the availability of long data records and stationary 
relationships over time. Simple statistical models rely exclusively on the 
existence of linear relationships between rainfall and the input variables such as 
lagged climate indices. In practice, linear relationships for rainfall are highly 
discontinuous and fragmented when considered on a spatial and a temporal basis 
[24]. Using only simple linear models, it is essentially impossible to create a 
unified statistical model that can be applied over an extended geographical area 
such as south-east Queensland, and also incorporate statistically significant 
relationships between input and output for more than a limited period beyond a 
few months of the year. The result is essentially a set of rules corresponding to a 
highly complex classification system for rainfall prediction, with limited 
practical utility. The inevitable conclusion is that continuous simple linear 
relationships are not fundamental properties of the climate system, and it is 
preferable to utilize statistical modelling techniques that are designed to 
accommodate non-linear relationships. 
     Neural networks (NNs) have been used to forecast rainfall in many parts of 
the world [25]. This is a statistical approach that enables non-linear relationships 
to be considered as well as facilitating the input of multiple variables. For 
example, Shulka et al. [26] found with a NN model, inputting Nino indices 
produced superior forecasts compared to linear models for forecasting Indian 
monsoon rainfall. However, the NN approach has rarely been used to forecast 
rainfall in Australia. NNs have been used to forecasting Victorian spring rainfall 
using lagged SOI, Nino 4 and Indian Ocean Dipole (IOD) as input parameters, 
achieving superior performance to simple linear correlation models [27]. Abbot 
and Marohasy [28] used a neural network model with lagged climate indices to 
generate monthly rainfall forecasts for Queensland, that demonstrated more skill 
than POAMA. 

2 Method  

We forecast rainfall for three sites in the Brisbane catchment that are close to the 
Wivenhoe reservoir, and for which there is historical rainfall data extending back 
at least one hundred years. Monthly rainfall data for the sites was obtained from 
the BoM. Harrisville (station 040094) has an annual average rainfall of 820 mm 
and is approximately 30 km south-west of Wivenhoe. Gatton (station 040083) 
has an annual average rainfall of 778 mm and is located approximately 50 km 
south of Wivenhoe. Lowood (station 040120) has an annual average rainfall of 
812 mm) and is approximately 10 km south of Wivenhoe.  
     There are no correspondingly long temperature data series for these sites, or 
any other locality in south-east Queensland. Composite maximum and minimum 
temperature records were constructed from January 1887 to present using data 
from the BoM for three sites in Brisbane: the Brisbane Regional Office (station 
40214), Brisbane Aero (station 40223) and Brisbane (station 40913). 

River Basin Management VII  127

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 172, 2013 WIT Press ©



     Values for the climate indices SOI and Niña 3.4 were sourced from the Royal 
Netherlands Meteorological Institute Climate Explorer – a web application that 
is part of the World Meteorological Organisation and European Climate 
Assessment and Dataset project. Values for IPO were provided by Chris Folland 
from the UK Met Office.  
     We used the NN software NeuroSolutions 6 for Excel (NeuroDimensions, 
Florida, USA) with an Elman neural network [28] to generate a model through 
which up to six possible input data sets were investigated. These sets were 
constructed to correspond to monthly values of rainfall (Rain), maximum and 
minimum atmospheric temperatures (MaxT, MinT), Southern Oscillation Index 
(SOI), Interdecadal Pacific Oscillation (IPO), and Niña 3.4 (Nino).  
     A unary data set was defined as the current monthly value of one of these 
input parameters, plus the corresponding lagged values for the previous twelve 
months, comprising a total of 13 input columns to the neural network. A binary 
data set was defined as a combination of two unary data sets. For example the 
combination of 26 input data columns for SOI and maximum temperature 
(SOI/MaxT) comprises a binary set. Similarly, ternary combinations of the unary 
sets consist of 39 input data columns, as for example the combination of SOI, 
maximum temperature and rainfall (SOI/MaxT/Rain). 
     In our NN model, outputs were assigned as the monthly rainfall with a lead-
time of 1 month, 2 months or 3 months. For each input data set, the NN was 
optimised for 3000 epochs using a genetic optimization algorithm for 10 
generations. Training sets comprised approximately 85% of the total data 
available for each location, with the remaining approximately 15% used for 
testing. To compare the skill of this model among sites with differing annual 
rainfall totals, root mean square error (RMSE) values were normalized by 
dividing the RMSE by the corresponding monthly average rainfall to give a 
weighted non-dimensional index (WNDI) [28]. 
     It was found that lower overall RMSE values can, in some instances, be 
generated by combining outputs from different input sets. This was done by 
calculating a weighed linear averaging of output rainfall values corresponding to 
each time period for a specific site. The resultant output time-series can produce 
a near equivalent, or lower RMSE values, compared to the minimum value 
without post-processing, and also achieve better representation of extreme 
rainfall events when charted. This improvement can possibly be explained by 
suggesting that the observed rainfall time-series signals can be viewed as the 
resultant of simpler sets of overlapping component signals, each having specific 
dominant drivers. Signal decomposition and analysis based on this premise will 
be the subject of future studies. Another post-processing procedure that we tested 
was the application of an expansion function to the output to decompress values 
on the rainfall axis. The raw output from the neural network tends to reflect 
optimal solutions that are concentrated around the mean and may 
underemphasize very low and very high values. It is possible to expand the 
output with respect to the rainfall axis without an increase in overall RMSE for 
the model, and in this way the high and low rainfall values are better represented.  
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3 Results and discussion 

Linear correlations between many individual climate indices and rainfall have 
been examined for different areas across the Australian continent. Typically, 
concurrent correlations fall in the range of 0 to 0.5 and show high variability 
both spatially and temporally [14]. There is also high variability in quantitative 
associations between rainfall and lagged climate indices [24]. Despite the poor 
correlations, single input variables, typically SOI, have been used extensively for 
seasonal rainfall forecasting in Australia using simple statistical models. 
     In contrast, the NN approach enables input of a large number of variables 
simultaneously, with no assumptions as to which may be most significant in the 
prediction of rainfall for a specific lead period. If particular columns of inputs 
within a set, or an entire unary set, are not useful for prediction, there is a high 
probability these will be preferentially culled by the genetic algorithm, thus 
progressively refining the model by retaining only more significant inputs. 
     Feeding unary, binary and ternary combinations of input data sets into the 
NN, RMSE values were generated for Harrisville, Gatton and Lowood using all 
possible combinations of unary sets for 1 month lead time. There was no simple, 
unique, input combination of sets that always stood-out as providing a best 
forecast. This was also true with regard to the optimal duration of the lag period 
for inputs.  
     This result is consistent with the recent study by Schepen et al. [24] where 13 
oceanic and atmospheric climate indices lagged at periods of 1, 2 and 3 months 
were evaluated as predictors of Australian seasonal rainfall. The overall picture 
that emerged in Schepen et al. [24], when considered spatially and temporally, is 
a complex mosaic, or patchwork, for assignment of dominant lagged indicators 
of rainfall.  
     RMSE values for the present investigation for the site of Harrisville, 
considering a 1 month lead forecast, ranged from a high of 59.9 mm for the 
ternary set (Rain/IPO/Nino) to a low of 44.9 mm for the ternary input set 
(SOI/Nino/MinT). Values for Gatton ranged from a high of 60.7 mm for the 
ternary set (Rain/MinT/MaxT) to a low of 48.9 mm for the unary input set 
(Rain). Output for Lowood ranged from a high of 71.3 mm for the ternary set 
(SOI/Nino/MinT) to a low of 56.7 mm for the input set (Rain/SOI). Climate 
indices, atmospheric temperatures and rainfall were all important components of 
the optimal data input sets.  

3.1 Comparing NN output with BoM statistical model forecast 

The statistical forecast issued in November 2010 by the BoM for the 3-month 
period December 2010, January 2011 and February 2011, was in the form of a 
seasonal forecast map, fig. 1, indicating a 75% probability of above median 
rainfall for the Brisbane River catchment. This forecast was consistent with total 
precipitation observed over the three-month period. The flooding, however, 
resulted from falls of high intensity over a period of much shorter duration and 
was not forecast by the BoM.  
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Figure 1: Seasonal rainfall forecast by the BoM issued in November 2010. 

 

Figure 2: Neural network monthly rainfall forecast for Lowood (May 1992 to 
December 2011). 

     The general 3-month BoM forecast, fig. 1, is contrasted with the more 
specific time-series forecast from our NN, fig. 2. The NN forecast is for monthly 
rainfall for Lowood with a one-month lead-time for the 235-month period 
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(approximately 20 years) starting in May 1992 and ending in December 2011. 
The observed peak in December 2010 of 642.6 mm is represented in the forecast 
by a prominent forecast peak of 454.4 mm. This signal is clearly distinguishable 
from the prolonged period of drought in the prior 10 years when the maximum 
rainfall in any month never exceeded 220 mm, fig. 2. 
     This forecast, fig. 2, was produced by combining two primary NN output 
time-series forecasts, both generated with ternary input data sets. The first model 
used the ternary input set (Rain/IPO/Nino) to give an RMSE of 61.2 mm. The 
second model used the ternary input set (Rain/MaxT/IPO) to give output with an 
RMSE of 61.3 mm. The former model provided a better differentiation of the 
high rainfall period during the summer of 2010-2011. The latter model gave a 
better representation of rainfall during dryer periods. The combined output had 
an RMSE value of 57.2 mm.  

3.2 Comparing NN output with BoM general circulation model  

Output from the NN is directly comparable with output from the BoM’s 
Predictive Oceanic Atmospheric Model for Australia, POAMA. The comparison 
is limited to the 13.5-year period from July 1997 to December 2010 for 
Harrisville and Gatton as this was the only output available from the BoM for 
POAMA. Comparisons of RSME and WNDI values show that the NN gave a 
more skilled forecast than POAMA for both sites and for each of the lead times, 
Table 1. Interestingly, the forecasts for both POAMA and the NN do not show 
clear trends in skill improvement moving from a three- to one-month lead time, 
Table 1. 
 

Table 1:  Comparing the skill of the rainfall forecasts for Harrisville and 
Gatton. 

      Neural Network POAMA 
 Lead    Inputs sets RMSE WNDI   RMSE WNDI 

 Harrisville 
1 month    MinT/SOI/Nino 44.9 0.66 74.9 1.10 
2 months   MinT/IPO 45.7 0.67 69.1 1.01 
3 months Nino/MaxT 46.4 0.68 64.7 0.95 

 Gatton 
1 month  Rain 48.9 0.76 74.9 1.16 
2 months IPO/MinT 57.6 0.89 70.2 1.08 
3 months IPO/Rain 56.3 0.87 64.4 0.99 

 
     When the output for the NN is compared with the output for POAMA by way 
of charting, fig. 3 versus fig. 4, it is evident that the NN forecast generally shows 
less deviance from the observed rainfall values, as would be expected from the 
lower RMSE values, Table 1. Both methods show the summer peaks in rainfall 
for Harrisville, but there is no clear signal in the POAMA forecast, that 
differentiates the forecast rainfall for December 2010 from monthly rainfall  
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Figure 3: Observed rainfall versus Neural Network forecast for Harrisville.  

 

Figure 4: Observed rainfall versus POAMA forecast for Harrisville.  

during the previous decade, fig 4. The POAMA forecast for the 2010-2011 
summer peaks too early reaching a maximum in November 2010, before heavy 
rains were actually observed, fig 4. 
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     The output from POAMA for Harrisville is generally consistent with what is 
known of rainfall forecasts from general circulation models (GCMs) for the 
Australian east coast. For example, Vaze et al. [29] concluded that all 15 GCMs 
investigated in their study failed to reproduce the observed historical annual and 
seasonal mean rainfalls, across south-east Australia.  

4 Conclusions 

The catastrophic flooding in the Brisbane River catchment during the summer of 
2010-2011 caused loss of life and property damage that could have been avoided 
if there had been more timely and accurate rainfall forecasts [1]. More recent 
episodes of intense rainfall and severe flooding in southern Queensland occurred 
during January 2013 [30]. The coastal city of Bundaberg 350km north of 
Brisbane was particularly affected. This was during a period where the BoM 
seasonal forecast for the region was for below median rainfall [31]. 
     Both the statistical and dynamic forecasting models developed over many 
years by the BoM appear to be limited in their capacity to provide adequate 
warning of heavy rainfall. Alternative modelling techniques, such as NNs, 
provide more sophisticated methods for relating available input variables, such 
as lagged climate indices, to the desired output, rainfall, with specified lead 
times.  
     NN have not been extensively investigated for forecasting of Australian 
rainfall. However, studies from other regions of the world demonstrate their 
potential utility for forecasting. The present study has shown that it is possible to 
generate improved forecasts for the Brisbane River catchment by application of 
this approach using lagged climate indices, atmospheric temperatures and rainfall 
as inputs. There is also significant potential to further improve these forecast 
through further refinements of input parameters, for example by inclusion of 
rates of change of indices such as SOI, that appear to be of value in other 
statistical forecast models [32].  
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