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Abstract 

Meteorological forecasts for the next few days are usually not detailed enough to 
determine the exact probability distribution of the forecast precipitation, and, 
hence, the probability distribution of the forecast inflow into the hydrological 
system. However, the hydrological system manager is responsible for assessing 
the risk of flooding and violating constraints when operating the reservoirs. This 
paper deals with the problems involved in modeling forecast errors and of 
determining an operating policy that takes such errors into account. This is 
accomplished by first building an inflow scenario tree that takes forecast errors 
into account and then by solving the reservoir management problem with that 
tree. This paper describes how the tree was built. 
Keywords:  meteorological, forecast, hydrological, management, risk, flooding, 
daily, stochastic, optimisation. 

1 Introduction 

The management of a hydrological system often implies the pursuit of various 
divergent objectives. There is a need to optimize power plant generation but also 
to regulate the flow of rivers, ensure a sufficient supply of drinking water, 
comply with vacationing-related constraints and ensure the safety of waterside 
communities as well as that of the structures. Management models most often 
take these different objectives into account through flexible constraints, i.e. 
constraints for which violation is tolerated, while minimizing the overall costs 
incurred by such potential violations. Daily management can then be reduced to 
a stochastic optimization problem related to a single objective. It consists in 
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determining for the current day the water released from the reservoirs which 
maximize the hope of future profits, with the latter defined as the difference 
between the value of the hydroelectric generation and the total cost of violating 
the constraints.  
     The management of a hydrological system becomes especially critical during 
periods of high runoff. Several constraints run the risk of being violated and 
operating margins become very tight. In these conditions, run-of-river systems 
are the most vulnerable due to their low storage capacity and the inhabited areas 
they cross. An adequate representation of the uncertainty of water inflows within 
a management model thus becomes critical. 
     The uncertainty of water inflows stems from errors in the calibration of the 
hydrological model parameters, uncertainty regarding the water conditions in 
catchment areas, and the inaccuracy of weather forecasts. Weather forecasts are 
generally based on a deterministic meteorological model that only proposes one 
precipitation and temperature scenario over a ten-day time frame. Obviously, 
such forecasts are not perfect and it would be useful to know its uncertainty in 
order to soundly manage the hydrological system.  
     We are proposing to formulate the daily management problem using a 
multistage stochastic mathematical program with recourse within which the 
uncertainty of the deterministic meteorologist forecast is represented. We will 
present the perturbation methods used to transform a deterministic 
meteorological forecast into a probabilistic meteorological forecast and build a 
water inflow scenario tree.  

2 General description of the management problem 

The hydrological system management problem has received substantial 
treatment in scientific literature. Starting with a general mathematical 
formulation, Labadie [8] shows that a water inflow management model can be 
written as a non-linear, non-convex and possibly large-scale stochastic 
optimization problem. The author presents the state of the art for the various 
approaches used in practice to solve the problem. We have chosen the linear 
programming approach, one that is commonly used (Loucks [11]) since it can 
serve to easily model the constraints that temporally link decisions, such as the 
constraints pertaining to the flow times between reservoirs or those associated 
with flow variation boundaries. This approach benefits in practice from the 
sturdiness and power of commercial linear programming software.  
     A linear management model is obtained by approximating separable non-
linear functions from non-separable ones (generation functions) in the vicinity of 
a point given by non-linear functions in a piecemeal manner. The problem of 
finding the water release from the current day t which maximizes the hope of 
future profits is then formulated as a multistage linear stochastic mathematical 
program with recourse (Birge et al. [2]). This program can be reformulated into a 
deterministic linear mathematical program known as a deterministic equivalent 
(Birge et al. [2]). All that is needed is to know the discrete distributions of the 
daily inflows, and then build the resulting decision tree.   
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     Note that the size of the constraint matrix increases linearly with the number 
of nodes in the inflow tree. Should the tree become too large in size, modeling 
compromises and/or the use of decomposition methods (Birge [3]) would then 
have to be used to solve the program.  

3 Characterization of the meteorological forecast error 

Uncertainty in meteorological forecasting is predominant compared to the other 
sources of uncertainty related to a hydrological forecasting model 
(Krzysztofowicz  [7]). Coulibaly et al. [4] show that, even for fairly large errors, 
meteorological forecasting significantly improves the precision of inflow 
forecasts over a 7-day time frame. Numerous methods have been developed to 
characterize the uncertainty related to inflow forecasting (Tamea et al. [13]; 
Collischonn et al. [4]; Lefevre  [10]). Maskey et al. [12] proposed an approach 
used to represent the uncertainty of meteorological forecasting within a 
deterministic hydrological model. To our knowledge, there is no management 
model that explicitly integrates uncertainty in meteorological forecasting.  
     The deterministic meteorological forecasting that we are considering is 
provided to Hydro-Québec by Environment Canada and takes the form of a set 
of grids at six-hour intervals over a nine-day time frame, for a total of 36 grids. 
The first 48 hours are generated by the regional climate model (15-km 
increments) and are available in six-hour blocks, while days 3 to 9 are generated 
by the global model (110-km increments) and are available in 12-hour blocks. 
Hydro-Québec forecasters increase the value over the first 24 hours and merge 
the regional and global models, while producing 6-hour blocks for the entire 
period, followed by an interpolation at every 10 km. The 36 proposed 
precipitation grids are then merged into 9 daily forecasting grids. The daily 
forecasting grids are set, i.e. they cover the same geographic region. At each of 
the grid points (spaced 10 km apart) is found a total amount of forecast 
precipitation along with the daily minimum and maximum forecast temperatures.  
     Given the current day t  and a deterministic meteorological forecast issued 
over T  days, there are T  grids of daily meteorological forecasts issued. 
Let min max

( ) , ,( ) , ,( )
ˆ ˆˆ ˆ, , ,t T t (t+k) t i j t k t i j t k t z T T+ + +Π  be respectively the daily forecast grid for 

day t+T, issued on day t, the amount of forecast precipitation at point (i,j) for day 
(t+k) issued on day t, the minimum and maximum forecast temperature at point 
(i,j) for day (t+k) issued on day t. Let ( , )i jx x , I, J, be respectively latitude and 
longitude coordinates of grid points ( , )i j I J∈ × , the number of indexes of 
longitudinal and latitudinal grid points. 
     We are proposing a characterization of forecasting errors for the amount of 
forecast precipitation and based on the history of variations between the 
forecasting grids and the observation grids. The observation grids are built based 
on an extrapolation of the values recorded at the observation stations located in 
the hydrological system catchments. Given eqn. (2) that links the amount of 
forecast precipitation to the precipitation forecast issued on day t for the day 
(t+k), to grid point (i,j).  
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, ,( ) , ,( ), ,( )
ˆ( ); ; ( , ) ( ); 0.. 1i j t k i j t ki j t k tz ε z t i j I J k T+ ++= ∀ ∀ ∈ × = −             (1) 

 
where: 

, ,( )i j t kz + is the random variable representing the quantity of precipitation 

observed at point ( , )i j , for day ( )t k+  and , ,( ) ( )i j t k tε x+  is the random function 

representing the uncertainty of a deterministic forecast issued on day t, at 
point (i, j) , for day (t + k) . Functions , ,( ) ( )i j t k tε x+  are spatially and temporally 

correlated and the full determination of their parameters is complex, even 
impossible, to realize given the field’s spatial and temporal range.  
     The forecasting uncertainty is made up of three types of uncertainties: (1) 
uncertainty regarding the total amount of forecast precipitation over the 
forecasting time frame, (2) uncertainty regarding the temporal distribution of the 
precipitation, (3) uncertainty regarding the spatial distribution of the 
precipitation. We are representing the first two uncertainties by a perturbation 
(random data transformation) that we will call temporal perturbation of the 
forecast precipitation. We will call the uncertainty related to the spatial 
distribution of the forecast precipitation over the forecasting time frame spatial 
perturbation of the forecast precipitation. We assume that these two 
perturbations are independent. They are variations of the perturbations proposed 
by Latraverse [9] regarding the same forecasting grids over a two-day time 
frame. The perturbations that we are proposing can be used to transform 
deterministic meteorological forecasting into probabilistic forecasting in the 
form of a scenario tree.  

4 Temporal perturbation of the forecast precipitation 

Temporal perturbation consists in reasoning not on the amount of forecast 
precipitation at the grid points but on the total amount of precipitation on the 
grids. Latraverse [9] shows forecasting errors on these quantities are independent 
from one day to the next. The random variable t kq + , associated with the total 
amount of precipitation observed on the grid for day ( t k+ ), verifies eqn. (3): 
 

                             ( )
ˆ( );t k t k tq f q  k=0..T-1;  t+ += ∀ .                                  (2) 

 

 with   ( ) , ,( )
ˆ ˆ

t k t i j t k t
i I j J

q z+ +
∈ ∈

=∑∑ , ( ) , ,( )t k t i j t k t
i I j J

q z  + +
∈ ∈

=∑∑ for k=0...T-1,  t∀ , 

and ( )
ˆ( )t k tf q +  a random variable. We propose to discretize the function ( )f x  

using discrete random variable 1 ( )
ˆ( )v

t k tq +Ψ . Given a history of forecasting grids 

and observation grids and the following sets (see eqn. (4)): 
 

{ } { }( ) ( )
ˆ ˆ ; .. ; .. ;k h h k h ht k t t k tA q t t t k , A q t t t k  k=0..T-1+ += = − = = −        (3) 
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with ht , ht and K , be respectively the history starting date, the history ending 

date and the number of days in typical forecasting time frame. Set ˆ
kA  is made 

up of the amount of forecast precipitation based on a forecast history and 
associated with kth day. Set kA  is made up of observed amounts of precipitation 

corresponding to elements of ˆ
kA . Given ˆ v

kE  respectively v
kE , the subset of set 

ˆ
kA  made up of v  elements that are closest to ( )

ˆ
t k tq + , respectively the subset of 

set Ak  made up of the observed elements associated with elements of ˆ v
kE . 

Given an arbitrary division of v
kE  (see eqn. (4)) into kN  classes ( 0.. 1k T= − ): 

 
1 .. ; ; 1.. ; 1..k k kN i jv

k k k k k kk k kE C C  C C  i,j; i N  j N= ∪ ∪ ∩ =∅ ∀ = = .          (4) 
 
Let ki

kc be the centroid of the class ki
kC  for 1..k ki N= . Random variable 

1 ˆ( )v
t kq +Ψ  for a given t  is defined by kN amounts of precipitation and eqn. (5): 

 

            1 1ˆPr ( ) ( , ) ; 1.. ; 0.. 1k

i
kiv

t k k k kk v
k

C
ob q c P k i  i N k T

E
+

 Ψ = = = = = −         (5) 

 
Given a deterministic meteorological forecast of the total amount of daily 
precipitations { }( 1) ( 1)

ˆ ˆ ˆ, ,..,t t t t t T tq q q+ + −  issued at the start of current day t . Based 

on the distribution of discrete random variables 1 ˆ( ( ); 0.. 1)v
t kq k T+Ψ = − , an event 

tree could be built that represents the scenarios of the amounts of probable 
precipitations with as many stages as days in the forecasting time frame, the tree 
becomes enormous in size, even if the forecasting time frame is limited to only 
about a dozen days. We resort to the use of a scenario tree reduction algorithm 
(Heitsch and Romisch [6]) as to only keep a limited number of scenarios forming 
a reduced tree that is statistically close to the original tree. The following 
notation is used for the remainder of the article: '

kN , ki
− and ki

kd respectively the 
number of nodes in the reduced tree for stage k , the predecessor of ki th node of 

stage k  of the tree ( '1..k ki N= , for 0.. 1k T= − ) and the amount of 
precipitations associated with node ki in the reduced tree ( 0.. 1)k T= − . 

5 Spatial perturbation of the forecast precipitation 

The uncertainty regarding the spatial distribution of precipitations is important 
for the characterization of forecasting errors in relation to the hydrological 

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2006 WIT PressWIT Transactions on Ecology and the Environment, Vol 99,

Management of Natural Resources, Sustainable Development and Ecological Hazards  581



system management problem. In fact, the risk of flooding or spillage in a 
hydrological system for a given amount of precipitation differs considerably 
depending on the distribution of precipitations in the catchment areas that make 
up the hydrological system under study.  
     We are assuming, for modeling purposes, that the spatial distribution of the 
points in the grid for all the deterministic forecasting grids remains invariant; 
only the geographic location of the forecasting grids changes. The spatial 
perturbation takes the form of a spatial translation of the deterministic 
meteorological forecasting grids. The parameters for these translations are 
calculated based on the forecasting errors on the location of the maximum 
precipitation point associated with the first forecasting grid. In reality, the 
forecasting grids cover a larger area than the catchments in the hydrological 
system, which allows, post-translation, to have full coverage of the hydrological 
system catchment areas through the translated grids.  
     The choice of this modeling resides in approximating the following 
meteorological phenomenon. Low-pressure systems generally follow the same 
direction. We are attempting in this modeling to capture the fact that the forecast 
low-pressure system can travel more to the north or more to the south, while 
keeping the original spatial distribution of the associated precipitation. 
     Let ( , )i j , ˆ ˆ( , )i jx y , ( , )i jx y  be respectively the indices for the maximum 

precipitation grid point ( { }, ,, ,
ˆ ˆ ; ,i j t ti j t tz Max z i I j J= ∈ ∈ ) on the first forecasting 

grid, the forecast longitude and latitude coordinates of grid point ( , )i j  and the 

random variable corresponding the coordinates observed at the grid point ( , )i j . 
     The forecasting error equation on the location of the point of maximum 
precipitation is written ˆ ˆ( , ) ( , )i j i jx y g x y= , with ˆ ˆ( , )i jg x y  a random variable. 

     We are proposing to discretize function ˆ ˆ( , )i jg x y with discrete random 

variable 2 ˆ ˆ( , )i jx yΨ . The assumption is made that the forecasting errors 

longitudinally and latitudinally from the maximum point of precipitation are 
independent and follow normal laws.  
     Given R  ( 1)R  points ,1 ,2( , )r re e , generated from a forecast location from 
the maximum precipitation point and normal laws of errors on the latitude and 
longitude. Given lA , 1..l L= , the different catchments of the hydrological 
system and ( ( , ), 1.. )l l lu x y  l L= = , the point that minimizes the aggregate of the 
distances between it and all the generated points part of catchment ( lA , 1..l L= ). 

Given * * *( , )u x y=  the point minimizing the aggregate of the distances between 
it and all the generated points that are not part of any of the catchments in the 
hydrological system. Eqns (7) and (8) then define the random variable 

2 ˆ ˆ( , )i jx yΨ .  
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     ( ) ,1 ,2( , )
2 2

1

ˆ ˆ, ( , ) ( ) ; 1..r r lr e e A
l li jProb x y x y P l l L

R
∈ Ψ = = = =  

∑
              (6) 

     ( ) * *
2 2 2

1

ˆ ˆ, ( , ) ( 1) 1 ( )
L

i j
l

Prob x y x y P L P l
=

 Ψ = = + = −   ∑                  (7) 

 
The spatial perturbation corresponds to 1L +  movements for all the forecasting 
grids. Each movement is defined by the translation which correlates the 
maximum precipitation point associated with the first forecasting grid, with one 
of the L+1 locations. The forecast maximum and minimum temperatures at the 
grid points are updated based on their altitudes in relation to those they had prior 
to the translations. For instance, a grid point associated with a given geographic 
altitude will see its forecast temperature decrease if, after translation, said grid 
point has a greater altitude.  

6 Example 

The temporal perturbation of the forecast precipitation allows a tree of probable 
precipitations to be obtained. The spatial perturbation of the forecast 
precipitation generates series of grids of translated forecasts compared to the 
grids in the initial deterministic forecast. The composition of the two 
perturbations allows a scenario tree to be obtained of probabilistic-forecast grids.  
     The following figure (fig. 1) depicts results obtained by the described 
perturbation method for a given day of the past. The hydrological system 
considered in this example is the Gatineau system, a runfall-runoff system in 
Quebec. We can see on each grid (in black line) the Gatineau hydrological 
system frontier. At the beginning of the 14th October of 2003, a daily 
meteorological forecast grid has been issued (top left corner in fig.1). The other 
grids have been generated by the perturbation method. The intensity of the 
precipitation is shown by a color gradation.   

7 Conclusion 

The integration of meteorological forecasting uncertainty in a daily hydrological 
system management model can substantially improve the safety of hydrological 
system operation, especially when the system’s water conditions are near their 
limits. The precise characterization of the uncertainty of the forecasting grids is 
complex and even impossible to achieve given the vast spatial and temporal field 
that needs to be considered. Aggregations (perturbations) are then needed to 
decrease the problem’s complexity while attempting to capture the variability of 
future probable meteorological conditions. The management model we are 
proposing is a piecemeal linear model within which the representation of 
meteorological forecasting uncertainty takes the form of a tree of inflow 
scenarios.  
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Figure 1: Example of grid perturbation method. 

     In the operational context, this management model is reset at the start of each 
day based on deterministic forecasting and must be solved fairly quickly so that 
decisions regarding reservoir water release are made on time. The transformation 
of the forecasting grid tree into an inflow scenario tree through the hydrological 
model is the most costly stage from the standpoint of computation time, which 
limits the number of meteorological scenarios that can be built for the tree. 
However, the parameters of the perturbation methods allow the meteorological 
scenarios that are to be represented in the forecast tree to be “chosen.” This 
allows the risk of flooding and/or spillage associated with extreme 
meteorological scenarios to be quantified over the forecasting time frame.  
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     In our work, we confined ourselves to characterizing the uncertainty of 
precipitation forecasts, disregarding inflows resulting from the snowmelt. This 
therefore limits us to testing the approach in the summer or fall, when 
temperatures have very little influence on the transformation of precipitation into 
inflow. The proposed management model that is combined with the Hydrotel 
hydrological model is in the process of being tested on the Gatineau River 
hydrological system based on a history of several years of forecasting errors. If 
the results prove promising, we will integrate the notion of temperature in order 
to make the model applicable to the spring freshet.  
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