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Abstract 

This paper addresses the problem of determining the daily operating policy of a 
reservoir over a one-year period that satisfies conflicting objectives regarding 
hydropower generation, flood control, navigation, and recreational activities. 
This optimization problem is stochastic because streamflows are random and can 
be forecasted only a few days in advance.  One of the difficulties involves taking 
streamflow persistence into account and, more specifically, the fact that there 
may be long periods of high and low flow. This is important because floods 
usually occur during long periods of high flow, while water shortages occur 
during long periods of low flow. The paper shows how to solve the problem with 
rule curves, Dynamic Programming, and simulation. 
Keywords:  daily reservoir operation, multi criteria, stochastic optimization, rule 
curves, multi-lag autoregressive models. 

1 Introduction 

This paper deals with the problem of determining the optimal daily operating 
policy of a multi-purpose reservoir over a one-year period. The problem is 
stochastic because the reservoir inflow is random and cannot be predicted long in 
advance. The difficulty in solving this problem stems from the fact that there are 
many competing objectives to meet and the daily inflow in usually correlated 
with the inflows from the preceding days. The objectives may involve water 
quality, the preservation of endangered species habitats, recreational activities, 
flood control, water supply, navigation and hydropower generation (Eschenbach 
et al. [1]). 
     The multi-objective reservoir management problem has been the subject of 
several publications in the past. A list of these publications can be found in the 
survey papers of Yeh [2], Wurbs [3] and Labadie [4,5].  The paper by Cohon and 
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Marks [6] describes and compares the different techniques used for solving 
multi-objective optimization problems. These techniques are divided into three 
classes: the generating techniques, techniques that rely on the prior articulation 
of preferences, and techniques that rely on the progressive articulation of 
preferences.  The generating techniques, like the weighting and constraint 
methods, were the first multi-objective solution procedures that were developed.  
They are easy to apply, but are not recommended for problems with more than 
three objectives (Cohon and Marks [6]).  The second class of techniques includes 
the Goal Programming method by Charnes and Cooper [7] and the Surrogate 
worth trade off method by Haimes and Hall [8]. The third class consists of 
iterative and step methods, like the Stem method by Benayoun et al. [9]. 
     Multi-objective optimization has been applied to the management of several 
rivers, and notably to the Trent River in Canada, the TVA system in U.S., the 
Svarta River in Sweden, the Iguaçu and San Francisco rivers in Brazil, the 
Chaliyar River in India, and the Tone River in Japan. It has also been applied to 
the management of Lake Como in Italy and the Hoover reservoir in U.S. The 
Trent River basin covers an area of 4400 square miles and contains 48 reservoirs 
and 14 hydroelectric power plants. The multi-objective operating policy of this 
huge basin is determined iteratively with a simulation model (Sigvaldason [10]). 
The daily management of the TVA system, which consists of 46 reservoirs, is 
done using a decision support system called RiverWare (Eschenbach et al. [1]).  
This system solves the multi-objective optimization problem with the Goal 
Programming method.  The Svarta River basin, located in south central Sweden, 
has two reservoirs which are managed to satisfy four competing objectives: 
hydroelectricity generation, irrigation, water supply, and urban water supply.  
The problem of allocating the water between the four objectives is solved with a 
weighting method (Goulter and Castensson [11]). The optimal daily operating 
policy of the four hydroelectric power plants on the Iguaçu River in Southern 
Brazil is determined with Dynamic Programming.  Two of the four power plants 
are own by a utility named COPEL and the other two by a utility named 
ELECTROSUL.  Since the objectives of both utilities must be satisfied, the 
optimization problem has therefore more than one objective and is thus a multi-
objective problem. The daily operating policy of the Sobradinho reservoir on the 
San Francisco River in Brazil was determined with a technique called Sampling 
Dynamic Programming (Dias et al. [12]). The problem has two objectives: to 
maximize the production of electricity and minimize the cost of flooding, which 
can easily be rewritten as a single objective: to maximize the revenue of the 
generated electricity minus the cost of flooding. The Chaliyar River basin in 
India has five reservoirs which are managed to satisfy three objectives: drinking 
water supply, irrigation, and hydropower generation. The operating policy for 
these reservoirs is determined with a linear multi-objective programming model 
that maximizes the hydroelectric generation subject to constraints on the 
drinking water supply and irrigation. The optimal monthly operation of the three 
reservoirs in the Tone River basin in Japan was determined with Stochastic 
Dynamic Programming  (Wang et al. [13]).  The approach consisted in breaking 
down the optimization problem of three reservoirs into three sub-problems of 
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one reservoir.  This breakdown was made possible by the fact that the three 
reservoirs are located on three different tributaries of the Tone River.  Stochastic 
Dynamic Programming was applied to each sub-problem separately. The 
problem has objectives for the firm water supply, flood control and hydropower 
generation. The two first objectives were converted into constraints so that the 
sole objective of the optimization problem was to maximize hydropower 
generation. The main interest of this paper is that it takes the stochasticity of the 
reservoir inflows into account, which is not the case for the other papers cited 
above. 
     The paper is organized as follows. In section 2, the problem of determining 
the daily reservoir operating policy that satisfies several objectives is formulated. 
Section 3 shows how the stochastic optimization problem can be solved 
iteratively with Dynamic Programming and simulation. Section 4 shows how the 
lag- n  autocorrelation of the inflow can be taken into account by the 
optimization problem. Finally, section 5 shows how the problem can be solved 
with rules curves and Dynamic Programming. 

2 Problem formulation 

The problem consists in determining the volume of water to release from the 
reservoir each day of the year in order to satisfy the following objectives: 
 

a) Maximize the generation of the hydroelectric powerplant fed by the 
reservoir; 

b) Maintain the reservoir and discharge at a high enough level to preserve 
endangered species habitat and permit navigation and recreational 
activities; 

c) Minimize the risks of flooding. 
 

Let us represent by: 

tS      the reservoir content at the end of day t  in 3hm  

tR    the reservoir discharge on day t  in 3hm  

tQ    the reservoir inflow on day t  in 3hm   

tD    electricity demand on day t  in MWh  

( )1, ,t t tG S S R−  the generation of the powerplant on day t  in 

MWh . This generation is assumed to be a function 
of tR  and the water head corresponding to the 
average reservoir content for day t , which is 
assumed to be  equal to ( )1 2t tS S− +  
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( )365SΦ  the value of the water stored in the reservoir at the 
end of the year, 

 
and suppose that: 

• Objective  b  is satisfied on day t  when min
t tS s≥  and min

t tR r≥  

• Floods occur when  max
tS s>  or   max

tR r>  

Unlike maxs  and maxr , the lower bounds min
ts  and min

tr  are functions of t  
because environmental constraints, navigation constraints and recreational 
activities vary throughout the year.  
     The multi-objective reservoir management problem can be formulated 
mathematically as follows: 
 

  Maximize  ( ) ( )
365

1 365
1

, ,t t t
t

G S S R S−
=

+ Φ∑            (1) 

 
 subject to: 
 

  1t t t tS S Q R−= + −               (2) 

  min max
t tr R r≤ ≤             (3) 

  min max
t ts S s≤ ≤             (4) 

  ( )1, ,t t t tG S S R D− ≥              (5) 
 
This formulation corresponds to the constraint method in the paper by Cohon 
and Marks [6]. This formulation supposes that inflows 1 2 365, ,...,Q Q Q  are known 
at the beginning of the year.  Depending of these inflows, there may or may not 
be a solution to problem (1)-(5). For instance, if the inflows are very high, it 
might not be possible to always respect the upper bounds in inequalities (3) and 
(4) and, hence, avoid flooding. If the inflows are very low, the lower bounds in 
inequalities (3)-(5) might not always be respected. When there is no feasible 
solution to problem (1)-(5), the bounds must be modified until a feasible solution 
is found.  The problem is to decide which bounds to modify and by how much. 
     Problem (1)-(5) can be reformulated in a way that all solutions are feasible. 
This formulation is obtained by replacing inequalities (3)-(5) by a penalty 
function in the objective function which assigns a cost to the violations of the 
bounds. This gives the following model:  
 

 maximize ( ) ( ) ( )
365

1 365
1

, , ,t t t t t t
t

G S S R L S R S−
=

− + Φ  ∑          (6) 
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 subject to: 
 

  1t t t tS S Q R−= + −             (7) 

  , 0t tS R ≥       (8) 
 
where:  
 

          

( ) ( ) ( )
( ) ( )

( )( )

2 2min max
1 2

2 2min max
3 4

2

5 1

, max 0, max 0,

max 0, max 0,

max 0, , ,

t t t t t t

t t t

t t t t

L S R s S S s

r R R r

D G S S R

α α

α α

α −

   = ⋅ − + ⋅ −   

   + ⋅ − + ⋅ −   

 + ⋅ − 

  (9) 

                     
The penalty function ( ),t t tL S R  is equal to zero when inequalities (3)-(5) are 
respected.  When they are not, the penalty cost is equal to the sum of the square 
of the violations.  The values of parameters ,iα 1,2,...,5,i =  should be adjusted 
to reflect the importance of the objectives.  If objective c  is more important than 
objectives a  and b , the values of 2α   and 4α  should be greater than those of  

1α , 3α  and 5α . If satisfying inequality (5) is more important than satisfying 

objective b , the value of 5α  should be greater than those of 1α  and 3α . The 

value of 1α  should be greater than that of 3α  if maintaining the level of the 

reservoir above min
ts  is more important than maintaining the stream flow above 

min
tr .  Similarly, the value of 2α  should be greater than the value of 4α  if the 

flood damages are greater when maxs  is increased than when maxr  is. One can 
naturally use linear functions instead of quadratic ones in (9) to penalize 
violations.  The advantage of using quadratic functions is that it discourages 
major violations of the bounds. 

3 Optimisation and simulation 

The optimization models presented in section 2 can solve multi-objective 
reservoir management problems only when the reservoir inflows are assumed to 
be known a year in advance.  Since inflows are only known a few days in 
advance in real life, these models cannot be applied to real problems.  
     The fact that inflows are not known many days in advance does not mean, 
however, that there exists no information on the inflows that might occur in the 
future. If we assume that future inflows will resemble those of the past, historical 
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inflow data can be used to determine the probability distributions of future 
inflows. Once the probability distributions of the daily inflows are known, the 
reservoir operating policy can be determined by solving the following problem: 
  

          Maximize ( ) ( ) ( )
365

1 365
1

, , ,t t t t t t
t

E G S S R L S R S−
=

 − + Φ   
 
∑       (10) 

 
subject to constraint (7)-(9). The symbol E  in (10) stands for the expected 
value. This problem can be solved with Stochastic Dynamic Programming 
(SDP), which consists in solving the following functional equation backward in 
time: 
 

        ( ) ( ) ( ) ( ){ }1 1 1max , , ,
t t

t t t t t t t t t tQ R
F S E G S S R L S R F S− − += − +        (11) 

with ( ) ( )366 365 365 .F S S= Φ  When function ( )365SΦ  is not known, the following 

procedure should be followed. Set ( ) 0Φ =  and solve equation (11) backward 

in time for one year. Next set ( ) ( )1FΦ =  and solve equation (11) backward 
again for another year. Repeat the procedure until the marginal values of 

( )365SΦ  do not change in two consecutive iterations. 
     The solution determined by functional equation (11) is a feedback solution 
and can be denoted by ( )1,opt

t t tR S Q− . This solution is optimal for the values of 
the parameters used in (9). If the values of the parameters are changed, the 
solution of the optimization problem will probably change. The problem is to 
find the values of the parameters ,iα 1,2,...,5,i =  that give the best solution, 
i.e. the solution that best satisfies the objectives. This problem can be solved by 
simulating the operation of the reservoir over a period of N  years with the 
historical inflow data and the operating policy ( )1,opt

t t tR S Q− , 1, 2,...,365t = , 
determined by (11).  The results of the simulation can be used afterwards to 
determine the probability of flooding, the number of days in N  years of 
simulation that the reservoir level has been lower than min

ts , the reservoir 
discharge smaller than min

tr  and the generation less than tD .  If the results are 
not acceptable, the parameter values must be changed and the problem solved 
again. 

4 Inflow model 

Functional equation (11) supposes that tQ , the inflow on day t , is an 
independent random variable. In reality, tQ  is generally not independent but 
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correlated to the inflows of the preceding days. This is called persistence. It 
exists when there are periods of several consecutive days of high flows and low 
flows in the historical record. Long periods of high flow occur during the spring 
freshet and when it rains heavily during many consecutive days. Long periods of 
low flow often occur in the summer when it does not rain for many consecutive 
days. These long periods of high flow and low flow must absolutely be taken 
into account by the optimization model because the risks of not satisfying 
objectives b  and c  are higher in those periods.  The correlation between the 
inflow of day t  and that of days 1, 2,...,t t t p− − −  will be taken into account 
if functional equation (11) is replaced by the following: 
 

( )
( ) ( )

( )1

1

1 1
,...,

1 1

, , ,
, ,..., max

, ,...,tt t t p

t t t t t t

t t t t p RQ Q Q
t t t t p

G S S R L S R
F S Q Q E

F S Q Q− −

−

− − −
+ + −

  − +  =  
    

           (12) 

Equation (11) uses ( )t tQΓ , the probability distribution of tQ , to solve the 

problem. Equation (12) uses ( )1 2, ,...,t t t t t pQ Q Q Q− − −Γ , the conditional 

probability distribution of tQ , to solve the same problem.  The conditional 
probabilities can be determined from the historical data or by a mathematical 
model of the inflows. The most commonly used models are the autoregressive 
models (AR), the autoregressive-moving-average models (ARMA) and the 
disaggregation models (Salas et al. [14]). 
     The biggest problem with solving equation (12) is that the computer time and 
memory space increase exponentially with the number of state variables. 
Bellman [15] called this “the curse of dimensionality”.  As a result, functional 
equations with more than four state variables cannot be solved in a reasonable 
time, which means that (12) cannot be solved when  3.p >  Since the daily 
inflows are often correlated with those of the past 5 to 10 days, not all reservoir 
management problems can be solved with equation (12). 
     Turgeon [16,17] has shown that the past p  inflows in equation (12) can be 
represented by a single state variable when the inflows can be correctly 
represented by a AR or ARMA model. Let us suppose that they can be 
represented by the following AR model: 
 

 0, 1, 1 2, 2 ,...t t t t t t p t t p tQ Q Q Qφ φ φ φ ε− − −= + + + + +            (13) 

where 0, 1, ,, ,..,t t p tφ φ φ  are parameters and tε  is the error term. Now if we set: 

 1, 1 2, 2 ,...t t t t t p t t pH Q Q Qφ φ φ− − −= + + +                        (14) 
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equation (13) can be rewritten as: 
 

 0,t t t tQ Hφ ε= + +                 (15) 
 

According to (15), tQ  is only a function of tH . Functional equation (12) can 
therefore be rewritten as: 
 

          ( )
( ) ( )

( )
1

1

1 1 1,

, , ,
, max ,t t t

t t t

t t t t t t

t t t Q H R t t tH H Q

G S S R L S R
F S H E E F S H

+

−

+ + +

  − +  =        

        (16) 

 

Turgeon [16] showed that the error committed using (16) instead of (12) to 
determine the optimal operating policy of the reservoir is very small. 

5 Inflow scenarios 

Characteristics of the inflows, like the mean, variance, skewness and persistence, 
are better taken into account when the optimization problem is solved with the 
actual historical inflow data than with the probability distributions of these data. 
Turgeon [18,19] showed how to use the historical inflow data to determine 
warning curves for the reservoir. A warning curve gives the level above or below 
which, the reservoir must be at each point in time to satisfy a probabilistic 
constraint. For instance, the lowest warning curve in Figure 1 could represent the 
trajectory above which the reservoir must be maintained to satisfy objective b  
with the desired probability. The highest warning curve could correspond to the 
trajectory below which the reservoir must be kept to satisfy objective c .  
Objectives b  and c  would therefore be met if the reservoir level would be 
maintained inside the corridor between the two warning curves. 
 

Level (m)

Time  

Figure 1: Warning curves. 
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     With the warning curves, the optimization problem becomes: 
  

  maximize ( ) ( )
365

2
1 5 365

1
, ,t t t t

t
G S S R Sα−

=

 − ⋅ ϒ + Φ ∑        (17) 

 
 subject to: 
 

  1t t t tS S Q R−= + −           (18) 
 

  ( )1, ,t t t t tG S S R D− + ϒ ≥                           (19) 
 

  low high
t t tS S S≤ ≤         (20) 

 
  , 0t tR ϒ ≥              (21) 

 
where low

tS  and high
tS  represent the warning levels, and tϒ   a dummy variable 

whose value is positive when demand, tD ,  is not satisfied.  If demand is too 
often not satisfied, the corridor in Figure 1 should be widened by increasing the 
probabilities of not satisfying objective b  and/or c .  
     The method presented in this section gives good results when the warning 
curves are determined with a large set of inflow scenarios.  Turgeon [18] used 
251 synthetic inflow scenarios to build the warning curves. Since the historical 
data rarely have more than 50 scenarios, synthetic data must be generated before 
using this method. 

6 Conclusion 

This paper presents three different mathematical formulations of the multi-
objective reservoir management problem. The first, which corresponds to 
equations (1)-(5), may not give a feasible solution. The second formulation, 
given by equations (6)-(9), always finds a solution, but this solution is a function 
of five parameters.  The problem is to adjust the five parameters so as to meet the 
three objectives. The third formulation is the best because it better takes into 
account the characteristics of the inflows and has only three parameters to adjust: 
the probabilities of not satisfying objectives b and c, and the value of 5α . 
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