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Abstract 

In hydrocarbon production, certain amount of water production is inevitable and 
sometimes even necessary. Problems arise when water rate exceeds the WOR 
(water/oil ratio) economic level, producing no or little oil with it. A lot of 
resources are set aside for implementing strategies to effectively manage the 
production of the excessive water to minimize its environmental and economic 
impact. Water shutoff technologies are available to effectively manage excess 
water production; however, their use requires the knowledge of the underlying 
cause. The conventional diagnostic techniques are only capable of identifying the 
existence of excess water and cannot pinpoint the exact type and cause of the 
water production mechanism (WPM). A common industrial practice is to 
monitor the trend of changes in WOR against time to identify two types of 
WPMs, namely coning and channelling. However, it has been demonstrated that 
WOR plots are not general and there are deficiencies in the current usage of 
these plots. In this paper we present a new technique for diagnosing WPMs. We 
extracted predictive data points from plots of WOR against the oil recovery 
factor and collect information on a range of basic reservoir characteristics. This 
information is processed through tree-based ensemble classifiers. Next we 
construct a new dataset smeared from the original dataset, and generate a 
depictive tree for ensemble using a combination of the new and original datasets. 
To generate the depictive tree we used a new class of tree classifiers called 
logistic model tree (LMT). Our results show high prediction accuracy rates of at 
least 93% and easy to implement workflow. Adoption of this methodology 
would lead to accurate and timely management of water production saving oil 
and gas companies considerable time and money. 
Keywords: water production mechanisms, water/oil ratio, ensemble classifiers. 
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1 Introduction 

A review of the available literature on the topic of excess water production in oil 
wells establishes that the industry still lacks a simple, easy to use tool, which 
takes advantage of all the relevant data and produces accurate and interpretable 
results [1]. While monitoring the trend of oil and water production data is a 
commonly used procedure to detect any abnormalities [2], it does not provide a 
very reliable tool for WPM diagnosis. The diagnosis of WPMs is a very complex 
task and requires a thorough examination of all the available data. Investigating 
the nature of the excess water produced into the well involves a multistep 
process in which, various types of data, which are usually accompanied with 
uncertainties, are looked in to and analysed. A solution to a better problem 
diagnosis under uncertainty is to supplement expert knowledge with predictions 
from mathematical and intelligent computing models. 
     In this work, we approach the problem of WPM diagnosis as a classification 
problem and use simulated reservoir models to depict various WPMs. Any 
ordinary classification problem, involves a learning stage in which a learning 
dataset, made up of a combination of predictor parameters corresponding to a 
particular class are fed to a learning algorithm to generate a classification model. 
The simulated reservoir models are used to build the learning dataset for the 
classification models. Each WPM case can be described by complex interaction 
of numerous reservoir parameters leading to different WOR plots, which display 
the characteristic trends of water and oil production in that WPM. In our 
innovative approach, we extract a sequence of informative discrete parameters 
from WOR plots, by recording values of oil recovery factor (RF) corresponding 
to a range of WOR values. Heuristically, set of such parameters would quantify 
the trend in the WOR curves and would be effective for discriminating classes of 
WPMs. We then incorporate the extracted information from these plots together 
with the knowledge of the reservoir characteristics into a knowledge base for 
developing tree-based classification models.  
     A classification tree is a display of the sequence of tests leading to a class 
label in a classification procedure similar to human decision making process. 
Prediction accuracy of the tree can be improved by constructing multiple trees 
[3, 4] on the different subset of data across observations and features. The results 
of the multiple trees can then be collated to form an ensemble classifier, whose 
individual predictions are combined in some manner (e.g., voting) to form a final 
prediction. Interpretability of the ensemble classifier can be improved by 
procreating new training cases by generating a smeared sample of the original 
data, and finally generating a single representative tree.  
     The rest of the paper is organized as follows. First, the generation of the 
learning dataset is explained. Next, we define the WPMs classification problem 
and outline the classification models. Finally, we present the results and 
conclusions. 
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2 Generation of learning dataset for classification models 

Synthetic reservoir models depicting excess water production problems of 
coning, channelling and gravity segregated flows and associated WOR-RF plots 
were used to build the learning dataset for the classification models. These 
models represent coning from bottom water drive, coning from edge water drive, 
channelling from injection water, channelling from edge water drive and also a 
complex condition of bottom water drive with baffles in vertical direction (for 
detailed information on the simulated models please refer to Rabiei [1]). From 
these base models, various scenarios of wettability with different values of oil 
viscosity and different degrees of crossflow between layers were simulated to 
cover a large range of practical situations with excess water production and the 
associated WOR-RF plots were generated.  
     On these plots, few points of splits across WOR plot were heuristically 
identified, so that within each segment the gradient remained constant. For each 
of the points the sequence of corresponding RF values was recorded. We 
considered the cut off value point at WOR equal to 40, which represented 97.5% 
water cut. In view of the small values of RF below WOR=1, only two 
representative parameters at WOR=0.1 and WOR=0.5 corresponding to water 
cut values of 9% and 33% respectively were selected from this region. The 
segment located between WOR=1 and WOR=10, equivalent to water cut values 
of 50% and 91% respectively, exhibited the most information-rich part of the 
plot with regards to the RF values. Each RFWOR parameter represents a RF value 
corresponding to a different level of WOR ranging between 0.1 and 40 
(e.g. RFWOR0.1 represents the value of RF at WOR equal to 0.1). Figure 1 
illustrates the split points and the segments on a sample WOR plot. 

 

Figure 1: Split points on a sample WOR plot. 
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     In this manner, k cases (k=714) of WPMs were generated where each case 

was identified by a set of static parameters  obtained from 
simulated reservoir models (Table 1) and dynamic parameters 

 extracted from WOR-RF plots and corresponding WPM 
type. These cases were stacked in to a matrix ( ) forming the final 
dataset to be used for classification purpose.  

Table 1:  Reservoir characteristics selected as input into the classification 
models. 

Parameter Abbreviation 

Vertical to horizontal permeability Kv/Kh 

API API 

Wettability WET 

Initial oil flow rate  IOFR 

Plateau period for the initial oil flow rate PP 

Drainage area DA 

Aquifer strength (Water/oil volume) AQWOV 

Water injection rate WIR 

 
     The dataset can be represented as CD  Lij,Cj , i 1, 2,...,815, j 1, 2,..., N  , 

where N is the number of cases in the learning dataset, 
Lij  S1 j ,S2 j ,...,Snj ,D1 j,D2 j ,...,Dmj  is the vector of the values of the static and 

dynamic parameters for the jth case in the learning dataset and Cj is the code for 
the corresponding WPM (1=Channelling, 2=Coning, 3=GravityDominated, 
4=NoWater). The cases with WOR values of 0.1 or less were labelled as 
NoWater and were used as control cases. The cases were then randomly sampled 
to form the learning and validating sets such that both learning and validating 
datasets had the same proportion of cases from each WPM class. The learning 
set included two thirds of the cases (N=476) in the dataset used for constructing 
and training the ensemble models. The remaining cases formed the validating 
set, used for evaluating and comparing the efficiency of the developed models. 

3 Defining the WPMs classification problem 

The WPMs classification problem is defined as 
Ir y   f s1,s2,...,sn ,d1,d2,...,dm , where (s1, s2,..., sn ) are values of the n 

static reservoir parameters, (d1, d2,..., dm ) are values of m dynamic parameters 
extracted from WOR-RF plots and Ir y  is an indicator parameter taking values 

of c= 1, 2, 3, 4  corresponding to the labels for each classification category of 

WPMs. The index r=1, 2, …, 14, corresponds to the models at different 
production stages, corresponding to known WOR values at that point of time. 

(s1, s2,..., sn , n  8)

(D1, D2,..., Dm , m 15)

714  24
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     For this study, we considered two different scenarios of pre and post-water-
production and for each scenario, appropriate set of parameters were used 
accordingly. In the first scenario (r=0), the classifier comprised only the static 
reservoir parameters. Such a model could be applied before a well starts 
production to investigate the possible likelihood of a water production problem 
in the future:  

 
Model #0: {I0 y   f s1, s2,..., sn } 

 
     For the second scenario, both static reservoir parameters and dynamic 
RFWOR parameters (m=1, 2, …, 15) were employed in order to investigate the 
interaction between these parameters and the resulted effect on WPM diagnosis. 
These parameters were sequentially added to generate a separate model for each 
stage of the water production cycle. This procedure would enable thorough 
examination of the effect of the extracted dynamic parameters in identifying the 
WPM. It would also define at which stage of water production cycle, one is more 
likely to identify the cause of water production more accurately. For this 
purpose, a separate classification model was implemented for each dynamic 
parameter, while taking into account the history of WOR trends before that 
specific production point.  

 
Model #1: {I1 y   f s1,s2,...,sn,d1,d2 } 

Model #2: {I2 y   f s1,s2,...,sn,d1,d2,d3 } 

. 

. 

. 
Model #14: {I14 y   f s1,s2,...,sn,d1,d2,...,d15 } 

 

     The classification models were produced using three popular ensemble 
classification techniques in data mining, namely, bagging [3], random forest [4] 
and AdaBoost [5]. In ensemble classification algorithms, the results from several 
individual classifiers are integrated in some manner (averaging or voting) in an 
attempt to provide a more accurate prediction. Random forest technique proved 
to be the best performing algorithm for this study. However, the results of 
ensemble classifiers are often complex and difficult to analyse. To make the 
results of these models more appealing and understandable to the end user for 
predicting and diagnosis of different WPMs in oil fields, we generated a single 
representing tree called the depictive tree from the ensemble of trees produced by 
random forest. To develop this depictive tree, firstly, the data smearing technique 
from Breiman and Shang [6] was used to generate a new dataset consisting of 
manufactured predictor parameters. Secondly, these manufactured predictor 
parameters were fed to the selected ensemble classifier (random forest) to predict 
a WPM type for each set of predictor parameters and form a new case of WPM. 
This new manufactured dataset was combined with the original dataset in an 
attempt to retain the latent traits of the original problem and used to generate an 
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easy to comprehend and user-friendly interface using the LMT (logistic model 
trees) algorithm [7]. LMT combines the linear logistic regression with the 
classification algorithm to overcome the disadvantages associated with either 
method.  

4 Results and conclusions 

The accuracy results and associated kappa value of the developed models are 
shown in table 2. While these models convey high total accuracy rates, it is also 
important to investigate their performance on identifying individual problem 
types as well. The risks and costs associated with wrong diagnosis of a WPM 
make it more reasonable to choose a model with a lower total accuracy but with 
acceptable performance in identifying all problem types.  

Table 2:  Accuracy and kappa value obtained from each model. 

Model# Accuracy Kappa 
0 90% 0.84 
1 96% 0.94 
2 95% 0.93 
3 95% 0.93 
4 95% 0.92 
5 94% 0.92 
6 93% 0.90 
7 94% 0.92 
8 94% 0.91 
9 93% 0.90 

10 94% 0.91 
11 94% 0.91 
12 93% 0.90 
13 93% 0.89 
14 93% 0.90 

 
     Figure 2 shows the associated votes for each case with regards to the model 
used in a colour-coded bar-plot, where each model in increasing index indicates 
the progression of well depletion. Each column in the bar plot corresponds to a 
case from the validating dataset. The rows correspond to the predicted class for 
each case by each model. Each WPM requires a specific treatment methodology, 
which usually costs a lot of time and money. Wrong diagnosis or failure to 
diagnose a problem type can entail costly operations on companies without any 
success. By assessing the models in sequence, cases that have been consistently 
misclassified can be identified and further examined to reveal any possible 
mistakes or abnormalities in those specific WPM cases. It is clear from fig. 2 that 
number of the misclassified cases in Model#0 is significantly higher than that of 
Models#(1-14). Especially, when the amount of the produced water is not large, 
the models perform very well and the number of misclassified cases is limited. 

180  Petroleum and Mineral Resources

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 81, © 201  WIT Press2



 

Figure 2: The sequential classification votes allocated to each case using 
classification models in pre and post-water-production scenarios. 

 
     The findings here establish that the applied technique can be successfully 
used in WPMs diagnostics. We obtained staggering accuracy rates of at least 
90% and 93% for the two scenarios, respectively. The models are easy to 
comprehend for the non-professional end users and are reasonably applicable in 
situations where water production data are not available.  
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