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Abstract 

Bionic optimisation strategies have proven to be efficient in many applications 
especially if there are many local maxima to be expected in parameter spaces of 
higher dimensions. In structural mechanics, the central question is whether one 
particular procedure is to be preferred generally or if there are different problem 
types where some procedures are more efficient than others. Evolutionary 
optimisation with some sub-strategies, particle swarm optimisation, and neural 
nets along with hybrid approaches that couple the aforementioned methods have 
been investigated to some extent. These approaches are not uniquely defined, but 
rather imply many variants regarding the definition and selection of next-
generation members, varying parameters of the underlying processes and the 
criteria to switch the strategy. To measure the performance of the different 
approaches some simple test examples have been used. The indicator of the 
procedures performance was the number of individuals which needed to be 
studied in order to come up with a satisfactory solution. As our main concern 
was about problems with many optimisation parameters, artificial neural nets do 
not show sufficient convergence velocities in our class of optimisation studies. 
Evolutionary optimisation, its subclass of fern optimisation and particle swarm 
optimisation prove to be of comparable power when applied to the test problems. 
It should not be disregarded that for all these approaches some experience about 
the optimisation parameters has to be gathered. In consequence, the total number 
of runs or individuals necessary to do the final optimisation is essentially larger 
than the number of runs during this final optimisation. Good initial proposals 
prove to be the most important source for all optimisation processes. 
Keywords: bionic optimisation, evolutionary optimisation, particle swarm 
optimisation, performance, structural mechanics. 
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1 Introduction 

Optimisation deals with the modification of free parameters in given entities in 
order to come up with better values for given objectives or goals. In structural 
mechanics optimisation is often applied by the varying design data, e.g. the 
dimensions of a structure to improve the goal, e.g. to minimize the mass of a part 
or system or to reduce the energy consumption under service conditions.  
     The term “Bionic Optimisation” covers all the methods related to natural 
phenomena by which better variants of a given design are found. This implies 
that most natural processes use optimisation to adapt, survive and reproduce at 
given environmental conditions by better adapting to the situation. As there are 
infinite variants of applying this to technical problems, a strong classification of 
the observed phenomena is required in order to provide some understanding of 
the optimisation processes. 

1.1 Terms and definitions 

Before dealing with the different bionic optimisation strategies, some terms and 
definitions will help establish a common language. Care should be taken when 
reading papers by different authors or schools, as one term may be used for 
different subjects. Most authors accept that for an optimisation:  
- We need a given goal or objective z. 
- The objective z depends on a set of free parameters p1, p2, ... pn.  
- There are defined limits and constraints on the parameters values.  
- Restrictions of the parameter combinations or of derived data like stresses or 

displacements exclude unacceptable or unfeasible solutions. 
- We want find the maximum (or minimum) of z(p1, p2, ... pn).  
     Some discussion of the terms helps to better understand the following 
process.  
• The objective or goal must be uniquely defined. We may not change the 

definition of the goal as this poses a new question and requires a new 
optimisation process.  

• We need to find all parameters and their acceptable value ranges we might 
modify during the optimisation studies.  

• The parameter range is the span of the free parameters’ values given by 
lower and upper limits. 

• The fewer free parameters we need to take into account, the faster the 
optimisation advances. Consequently, accepting some parameters as constant 
reduces the dimension of the solution space and accelerates the process.  

• Restrictions like unacceptable system responses or unfeasible geometry must 
be taken into account. But occasionally restrictions limit the ranges of 
parameters to be searched. Such barriers have the potential to prevent the 
optimisation process from entering interesting regions.  

• Finding the maximum of z(p1, p2, ... pn) is the same process as finding the 
minimum of the negative goal −z(p1, p2, ... pn). In consequence, there is no 
need to distinguish between the search of maxima or minima. 
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1.2 Gradient or derivative based optimisation 

Gradient or derivative based optimisation methods are the most popular ways to 
find improvements of given situations. From an initial position, the derivatives of 
the objective z(p1, p2, ... pn) wrt. The free parameters are determined. Moving 
along this gradient has the tendency to yield local maxima in a small number of 
steps, as long as the search does not start to far away from the local maximum.  

1.3 Bionic optimisation strategies 

Bionic optimisation may be defined by many different approaches. Here we deal 
with some of the most commonly accepted classifications without taking into 
account all the many sub-classifications that might be found in the literature. The 
central approaches we are going to compare are  
- Evolutionary Strategy (ES) [1, 2] - where paired or crossed parents have 
children by the combination and mutation of their properties. These children, or 
some of them, are parents in the next generation (Figure 1). 

 

Figure 1: Evolutionary optimisation: 2 parents 4 kids. 

- Fern Strategy (FS) - which may be regarded as a simplification of evolutionary 
optimisation. Individuals have offspring by mutation only but not by crossing 
properties with other members of the parent generation. 
- Particle Swarm Optimisation (PSO) [3, 4] - where a population drifts through 
the possible solution space. The swarm’s coherence is given by simple rules 
about the velocity of the individuals (Figure 2). 
- Artificial Neural Nets (ANN) [6–8] - where training of the net yields an 
understanding of the solution space and allows the prediction of the system’s 
response to given input. As ANN are not very efficient when applied to problems 
with many free parameters, we do not discuss them here [8]. 

parents 
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Figure 2: PSO, new velocity components of a particle. 

1.4 Measuring the efficiency of procedures 

To quantify the efficiency of the different optimisation strategies, we have to 
introduce a measure that allows us to uniquely define the amount of work 
required to achieve a predefined quality. From some experience we propose to 
use the number of individuals to be analysed before coming close to an accepted 
good value. This requires the knowledge of what a good solution would be, 
which is generally not known as soon as we start studying new problems. 

1.5 Violation of boundary conditions 

In all sequences of parameter sets that are based on random input, violations of 
the restrictions or boundary conditions may occur. Some problems are related to 
the fact that parameter combinations cause unfeasible geometries. Exceeding 
limits on physical responses, e.g. maximum stress or displacement have to be 
taken into account as well. There are different ways to deal with these 
inacceptable parameter sets. 
     The easiest way is to remove all unacceptable individuals from the list and to 
continue to produce members of the respective set until the required number of 
acceptable individuals is found. There is no reason not to use this selection type 
unless the cost of a specific function evaluation is too high to produce a number 
of individuals that may be essentially larger than the number of individuals 
required for the optimisation process.  
     Another way to keep the population near to the feasible range is to punish all 
violation of the given restrictions. A penalty multiplier weights the goal by the 
intensity of the violation. In consequence, punished individuals are less attractive 
for further reproduction, while the non-punished individuals have better chances 
to reproduce. 
 
 

 inertia  cognitive
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  sequences of positions 
  of some particles 

260  Computer Aided Optimum Design in Engineering XII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 125, © 201  WIT Press2



     A third among many other ideas is to fix the parameters of the individual in 
violation to the border of the allowable space. This may be easily done for 
geometric input, but can be difficult if derived values like stresses or 
displacement are in question. In such cases, a reduction of the difference from a 
good individual’s data may be used. If the parameters change less, the objective 
and the derived values may change less as well, so the violation may be avoided.  
We restrict our present study to the use of penalty functions for violations of the 
restrictions. The geometric input is set to the minimum or maximum value, if the 
randomly produced data exceed the respective limits. For PSO, we invert the 
particle’s old velocity, if it violates given limits in addition to the penalty value. 
This combined approach has the advantage of simple applicability. 

1.6 Hybrid strategies 

In order to accelerate the optimisation process, it is not uncommon to use 
different strategies and to switch between them. This may be very efficient in 
many cases. We could start by using evolutionary optimisation so as to cover a 
region of the solution space and then change to particle swarms as soon as we 
feel we have reached the region of the best proposals [4]. During this study, 
where the main concern is about measuring the speed and efficiency of the 
different strategies, we avoid these hybrid methods, as their inclusion would lead 
to a large and confusing set of combinations and corresponding accelerations of 
the optimisation process. 

2 Application of bionic optimisation strategies 

The description of the approaches in section 1.2 needs to be improved upon to 
impart a qualified understanding of the studies.  
- Individuals are the different elements of the parents and children sets. 
- Generation is one step in the evolutionary processes, given by a set of parents.  
- Mutation is the modification of an individual’s parameters [2]. 
- The mutation radius is the maximum change of a parameter’s value in a 

mutation step.  
     There are many other terms used in conjunction with bionic optimisation. As 
there is no generally accepted vocabulary, users are advised to check meanings 
carefully when reading papers from different authors [1, 2]. 

2.1 Evolutionary Strategy (ES)  

In Evolutionary Optimisation two parents have one offspring by combining the 
properties of their DNA, here the values of the free parameters. This crossed 
DNA is subject to some random modification, the mutation. Some of the 
children will be better suited to adapt to the environmental challenges. Their 
chance to survive is superior to their siblings, so their genetic code becomes  
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dominant within the population. Therefore, these better children will be the next 
generation’s parents. Some important things to note are: 
- The number of parents should be sufficiently large to cover some or many 

possible parameter combinations, e.g. 0.55 times the number of parameters. 
- The number of children should be 25 times the number of parents. 
- Pairing selects two individuals to produce one common child.  
- Should the parents survive to be parents in the next generation as well or not? 

Both approaches have their advantages and disadvantages.  
- Crossing, the way by which two parents define the properties of one common 

child, and mutation may happen in different ways [2].  
- The mutation radius may change during the course of the study 
- Selection determines which Children of the current population (including the 

parents or not) should be the parents of the next generation.  
     ES tends to converge to the best solution if there are sufficiently large 
numbers of parents, children and generations and if the mutation radius is rather 
large. The number of individuals to be studied may become very large if the 
values driving the process are not set in a favourable range. Figure 3 plots the 
history of the goal of the three best and the worst parent for example F3 (cf. 
section 3.1). 
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Figure 3: History of an evolutionary optimisation. 
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2.2 Ferns Strategy (FS) 

Fern Optimisation is derived from the fact that ferns reproduce from the spores 
of one single parent. These spores do not have the same genetic properties as the 
parent. A certain mutation happens as in all duplication of the DNA. 
- We define a limited number of initial designs - the parents - each given by a 

specific set of free parameters p1, p2, ... pn. 
- Each parent has a certain number of children, which are defined by a random 

mutation of their parent’s parameters.  
- This mutation radius may decrease during the course of the study. 
- The best of the children will be the next generation’s parents.  
- This process is repeated for a certain number of generations. 
- Sequences of parents and children which fail to come up with relatively good 

results are removed from the population to accelerate the process. 
- The best individual of all offspring is the proposed optimum of the process. 
     As the solution space increases in size it becomes less probable that the 
coverage of the initial parts is sufficient to find very good designs. For smaller 
dimensions, FS is able to provide interesting results while remaining very easy to 
implement.  

2.3 Particle Swarm Optimisation (PSO) 

Particle Swarm Optimisation [3, 4] follows the observation that many groups of 
living beings have a tendency to behave like a complex being itself. The basic 
assumption of PSO is that the individuals know their position and velocity. In 
addition, they know where their best position during the process has been, and 
where the swarm’s best position in the parameter space has been Then the 
process is defined by the following (c.f. Figure 2): 
- Each individual continues in its direction of travel: the inertia tendency. 
- It tries to return to the best position it ever assumed: the cognitive tendency. 
- It tries to approach the best position for all individuals: the social tendency. 
- These tendencies are weighted by some specific (c) and scalar or vector 

random (r) values and added to the inertia vector [4, 5].  

 socsocsoccogcogcogoldvnew rcrcc ddvv   (1) 

- The particle’s position in the next step is found by adding the new velocity to 
its old position. This corresponds to the definition of a new generation in the 
other approaches. 

 newoldnew vxx     (2) 

     PSO has proven to be very successful if an appropriate set of particles and 
velocity-weighting factors {cv, ccog, csoc} has been used. Unfortunately, PSO has 
the tendency to stick to local minima if these parameters are not well chosen [5]. 
Figure 4 compares the results found at test example F3 for different weighting 
factors, cv, and csoc while the cognitive weight was ccog = 0.1. There is a valley of 
efficient combinations of the coefficients. This valley is limited by steep hills 
indicating less efficient progress and weaker goals achieved by the PSO studies. 
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Figure 4: Dependency of the power of PSO of weighting factors for model 
F3. 

3 Comparing the efficiency of bionic optimisation strategies 

Optimisation is an expensive and time consuming process. We need to 
understand which procedure and which combinations of parameters may lead to 
a good and acceptable result within a reasonable amount of time.  

3.1 Test examples 

Figure 5 depicts the 5 test examples used while Table 1 summarizes their data. 
We want to minimize the mass of the frames by varying the rods’ cross sections 
without exceeding their maximum stresses and displacements. The grid size of 
the examples is 1000 mm except for example 2 where the grid size is 360 inches. 
Example F2 used imperial units (in, kip) the other frames use mm and Newton.  

Table 1:  Data of test problems. 

frame params grid size Amax / Amin E-Mod max dmax 
F1 6 1000 mm 600 / 20 mm2 200 GPa 120 MPa 0.5 mm 
F2 10 360 inch 35 / .1 inch2 10  Msi 25 ksi 2.0 inch 
F3 13 1000 mm 400 / 20 mm2 200 GPa 50 MPa 0.5 mm 
F4 58 1000 mm 400 / 20 mm2 200 GPa 100 MPa 2.0 mm 
F5 193 1000 mm 600 / 20 mm2 200 GPa 450 MPa 20 mm 

 
params:  # of rods in frame 
grid size: horizontal or vertical distance between the nodes 
Amax, Amin: maximum and minimum allowed cross section area of the rods 
E-Mod:  Young’s modulus 
max: maximum allowed stress in rod 
dmax:  maximum allowed displacement of nodes 
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Figure 5: Test frames with loads and supports. 

     To come up with comparable results, we did a series of 20 loops for each 
problem and each strategy to avoid having only one or few very good or very 
bad results. On the other hand, the parameters we used were based on some 
experience with the underlying problems, so the number of runs presented does 
not come from naïvely starting a procedure, but includes some preliminary work 
which is impossible to quantify. 

3.2 Input and results of the test examples 

Table 2 lists the inputs of the test runs used. Table 3 and Figure 6 (individuals 
per loop) summarize the results of the test runs. The most important data are the 
number of individuals analysed to find a sufficient good design labelled as 
‘Individuals [1000]’. The number given multiplied by 1000 gives the total 
number of individuals required to find the proposed design. mean and stddev 
(standard deviation) and best are related to the results of the 20 runs. The ratio of 
the difference between the best and the average result divided by the standard-
deviation (reldev) gives an idea of the stability of the strategy.  

3.3 Interpretation of the results 

ES, FS and PSO prove to be of a comparable efficiency when applied to the 4 
smaller problems (F1, F2, F3, F4). Figure 6 indicates that there might be a nearly 
linear relation between the number of optimisation variables and the individuals 
required to find good proposals. For the largest problem F5 FS displays a 
performance that is essentially weaker than ES and PSO. ES and PSO seem to be  
 

F=1kN F=100 kip F=1    2    4 kN 

F=1kN

F=1kN

F1                                  F2                              F3

F4 

F5 

F=kN
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Table 2:  Input parameters used. 

2.1. ES 
model parents kids mut.rad.max mut. Rad. min generations 
F1 10 20 .5 .05 60 
F2 5 10 .5 .05 40 
F3 5 10 .5 .05 50 
F4 50 100 .5 .05 100 
F5 100 200 .5 .05 200 

 
2.2. FS 

model parents kids/par. mut.rad.max mut. Rad. min generations 
F1 10 5 .5 .05 100 
F2 10 4 .5 .05 50 
F3 20 5 .5 .05 100 
F4 100 5 .5 .05 200 
F5 200 5 .5 .05 200 

mutation radius reduced   0% -   25% of generations: rmut = .50 
for ES and FS:   25% -   50% of generations: rmut = .20 
    50% -   75% of generations: rmut = .10 
    75% - 100% of generations: rmut = .05 

 
2.3.PSO 

model particles generations 
F1 10 30 
F2 10 40 
F3 20 80 
F4 50 200 
F5 800 70 

 
of comparable power when applied to the problem class which we discuss. FS 
shows promising results if the number of parameters is not too large, but the 
random search in high dimensional spaces becomes less successful. The scatter 
indicator reldev proposes that PSO has a more stable tendency to find solutions 
near the best while ES and FS show a larger range after the 20 runs.  
     Some knowledge may be gleaned from the results of these series of studies. 
Foremost that optimisation, especially bionic optimisation, is a process that 
consumes large amounts of time and computing power. 
     The results presented in section 3.2 would not have been found without a 
large number of preliminary studies providing experience in the field of 
optimisation of frames. 
     The input characteristics used in the test runs is derived from these 
preliminary studies. For example the selection of the 3 weighting factors {cv, cg, 
cs} for the PSO required some 100 000 runs (Figure 4). The proposal of the 
reduction of the mutation range for ES and FS is the result of many studies as 
well. The proposal to use a number of initial parents in the size of free variables 
for ES and PSO is based on many studies, as well as the idea to use a large 
number of initial parents and a small number of children in FS. 

Weighting factors:  
cv,= 0.08, ccog,= 0.005 csoc= 2.0 
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Table 3:  Results of 20 optimisation runs per problem. 

strategy model mean stddev best reldev Individuals [1000] 

ES F1 1.62e6 .716e3 1.62e6 1.50 12 
 F2 6.33e4 4.50e3 5.47e4 1.90 8 

 F3 2.56e6 6.99e4 2.48e6 1.11 20 

 F4 1.03e7 4.18e5 8.65e6 3.92 200 

 F5 1.98e7 1.07e6 1.58e7 3.65 800 

FS F1 1.66e6 4.49e4 1.62e6 0.81 28 
 F2 6.39e4 4.43e3 5.45e4 2.09 25 

 F3 2.50e6 2.29e4 2.47e6 1.19 46 

 F4 9.91e6 2.77e5 9.39e6 1.86 189 

 F5 2.33e7 4.18e5 2.25e7 2.15 2570 

PSO F1 1.65e6 1.71e4 1.62e6 1.61 6 
 F2 5.87e4 5.61e3 5.15e4 1.27 8 

 F3 2.50e6 2.53e4 2.48e6 1.02 32 
 F4 8.90e6 1.68e5 8.68e6 1.22 200 
 F5 1.54e7 0.18e4 1.53e7 1.70 1120 
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Figure 6: Efficiency of optimisation strategies. 

     One central fact about all optimisation may be learned from Figure 3. If there 
is a good initial design the number of optimisation runs to be done may decrease 
significantly. If an experienced engineer proposes an initial design with a goal of 
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e.g. 2.6 106, we need only 20 generations or 50% of the workload required to 
solve the task with a random initial design. 

4 Conclusions 

The quality of the initial proposals is the most important component of any 
optimisation. If experienced and motivated engineers propose designs that are 
close to the optimal ones there is a good chance that at least a local optimum will 
be found which is not too far away from the best solution possible. If we are 
close to good proposals, gradient methods will improve the parameters in short 
time and at reasonable effort.  
     As soon as we doubt that our initial designs are close to the optimal ones, ES 
or PSO have the capacity to propose of better designs. Nevertheless, the number 
of function evaluations may be large. Which of the two is to be preferred must be 
decided with some preliminary test. Often, the particle swarm shows a faster 
tendency towards the assumed best values, but some examples like those shown 
in Figure 4 indicate that the swarm might have the tendency to stick to local 
maxima like gradient methods.  
     Switching to gradient optimisation if a maximum is approached closely is 
always an interesting option. But experience has to be gathered there as well. 
     In every case, the optimisation of large problems is a time and resources 
consuming process. There is no way to avoid the evaluation of many individual 
solutions and there is no guarantee that the absolute best solution will be found 
at all. 
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