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Abstract

Aircraft engineering is subjected to many classes of uncertainties due to the lack
of proper definition of loads, behaviour of new materials or even due to the
inaccuracies produced during manufacturing. Because of that, the most advanced
methods of analysis and optimization need to be used during the dimensioning
of aircraft structures. One way to increase the safety level of a design could be
to increase the safety coefficients for load values or material strength, but this
approach would lead to an unacceptable amount of material for the aircraft. More
proper approaches can be applied using probabilistic analysis during the design
phase. In that case, some of the parameters, such as loads, material properties
of manufacturing tolerances are defined as random variables and a probabilistic
analysis is carried out to identify the safety of the design. This approach can be
also enhanced by introducing the concept of design optimization. In that case the
optimum solution for an aircraft structure is obtained even considering the random
nature of some of the design variables. In this paper these methodologies will be
described and some examples of aircraft structures will be presented to show the
potential in real problems.
Keywords: uncertainty quantification, reliability based design optimization.

1 Introduction

Reliability is related with the probability of verifying a certain condition. This is
known as the probability of failure. In a probabilistic analysis, the uncertainties
in the basic magnitudes of the structure are considered directly in the analysis,
changing from fixed quantities to random variables (RV). The limit state function
defines if a design belongs to the failure domain, where the limit state is not

Computer Aided Optimum Design in Engineering XII  219

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 125, © 201  WIT Press2

doi:10.2495/OP120191



verified, or to the security domain, where it is (figure 1). If a is the vector of basic
variables which contains the n random variables of the structure, then the domains
are defined as follows:

Failure domain: F = {a | g(a) < 0} (1)

Security domain: S = {a | g(a) � 0} (2)

The boundary between both domains is known as the failure surface or limit
state surface, which generally is an hypersurface of n − 1 dimensions in the n-
dimensional space of basic variables. The safety margin is now defined as a random
variable which can be identified with the value of the limit state function:

M = g(a) (3)

According to this, probability of failure pf is formulated as:

pf = P [g (a) � 0] =
∫

· · ·
∫

g(a)�0

fA (a) da, (4)

where fA (a) is the joint probability density function of all the basic variables
involved in the response of the system. Except in some particular cases, integral
expression (4) cannot be resolved analytically, because of the nonlinearity of
fA (a), and also due to the fact that the number of random variables usually
employed is large, and therefore the dimension of the problem.

The uncertainty quantification methods selected in this work to assess the
reliability of the structure are based on the Taylor series expansion of the limit
state surface. Those methods require information about the value of the limit state
function and its derivatives in the vicinity of the design point. A brief description
of the algorithms is presented next.

2 Reliability analysis methods

2.1 First order second-moment methods

The FOSM or first order second-moment method uses an estimation of the first two
statistical moments of the limit state function evaluated at µA, the point defined
by the mean value of the random variables [1]:

µM = E [g(a)] � g(µA) (5)

σ2M = V ar [g(a)] �
n∑

i=1

n∑
j=1

∂g(µA)
∂ai

∂g(µA)
∂aj

σAiAj , (6)

where µM and σM are the mean value and the standard deviation of the limit state
function, respectively. Reliability index β is defined from equations (5) and (6) as

β =
µM

σM
, (7)
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Figure 1: Failure and security domains.
Figure 2: First order reliability
method.

whereas the probability of failure pf can be obtained as

pf = 1 − Φ (β) , (8)

where Φ is the cumulative distribution function of the standard normal variable.

2.2 First order reliability methods

The FORM or first order reliability method [2] consists in the search of the most
probable point of failure (MPP) in the standardised domain of the random variables
(a′), in order to allow the substitution of the limit state function by its Taylor series
expansion of first order at that point (figure 2),

g(a′) � g(a′
f ) + ∇g(a′

f )T (a′ − a′
f ), (9)

where a′
f , the most probable point of failure, is the point of minimum distance

from the origin to the limit state surface. Geometrically, the method approximates
the limit state surface by the tangent hyperplane at the MPP. Reliability index is
related now to the failure surface, but it is invariant with respect to the formulation
of the limit state function:

β = − a
′T
f ∇g(a′

f )√
∇g(a′

f )T∇g(a′
f )
. (10)
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2.3 Advanced mean value methods

These algorithms assume the approximation of the limit state surface by the
tangent hyperplane at the point µA. The first order expansion is known as AMV:

M = g(a) � g(µA) + ∇g(µA)T (a − µA), (11)

whereas AMV+ is an enhanced first order approximation which starts in µA and
then iterates to obtain an estimation of the MPP (a∗):

M = g(a) � g(a∗) + ∇g(a∗)T (a − a∗). (12)

2.4 Two-point adaptive nonlinear approximation

The two-point adaptive nonlinear approximation (TANA3) is based on an
exponential approximation which uses information of the current iteration k and
also of the previous one k− 1 [3]. According to that, the limit state surface can be
approximated as

g (a) � g (ak) +
n∑

i=1

∂g (ak)
∂ai

(ai,k)(1−ri)

ri

(
ari

i − ari

i,k

)
+
ε2
2

n∑
i=1

(
ari

i − ari

i,k

)2
,

(13)
where the nonlinear index ri and the parameter ε2 are defined as

ri = 1 +
ln
(
∂g (ak−1)

∂ai

)
− ln

(
∂g (ak)
∂ai

)

ln (ai,k−1) − ln (ai,k)
, (14)

ε2 =
2 [g (ak−1) − g (ak)]

n∑
i=1

(
ari

i − ari

i,k−1
)2

+
n∑

i=1

(
ari

i − ari

i,k

)2−

−
2

[
n∑

i=1

a1−ri

i,k

ri

∂g (ak)
∂ai

(
ari

i,k−1 − ari

i.k

)]

n∑
i=1

(
ari

i − ari

i,k−1
)2

+
n∑

i=1

(
ari

i − ari

i,k

)2
(15)

3 Reliability based design optimization

Reliability based design optimization solves the problem of minimizing an
objective function, usually related with the cost of the structure, like the
weight, considering constraints defined in terms of uncertainty. The variables that
characterize the problem can be divided into two types. Design variables, which
are modified in the optimization cycle and random variables, which are the source
of uncertainty.
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RBDO is an active research topic and many authors have contributed so far.
Some interesting references can be found in [4          8].

The formulation of a RBDO problem can be set out in different ways, depending
on where the procedure to evaluate the reliability constraints is connected to
the optimization process. Thus, bi-level or double loop approaches consider the
reliability constraints within the optimization loop. On the other hand, mono-
level approaches replace probabilistic constraints with approximate deterministic
values, converting the double loop in a single loop. Finally, decoupled approach
solves the RBDO problem as a sequence of deterministic optimization procedures.

In this work a double loop framework with a reliability index approach has
been selected as methodology. The algorithm selected for the optimization loop is
sequential quadratic programming

4 Application examples

This section demonstrates the performance of the selected reliability methods
when applied in the context of a design optimization algorithm. Three different
examples are presented. In all the cases, the probabilistic results are compared
with the deterministic results, using in this case the mean values of the random
variables.

4.1 Ten bar truss

Figure 3 shows the geometry of a ten bar truss structure. Two loads of the
same value are applied and modelled with a random variable using a Gumbel
distribution. The mean value is 255.5 kN, and the coefficient of variation (COV)
is 0.15. The material is aluminum, having deterministic values the density and the
Poisson’s coefficient, with 2.77 t/m3 and 0.3 respectively. The Young’s modulus is
considered as a random variable with a normal distribution, with mean 6.895×104

MPa and COV 0.05. Dimensions are deterministic and the parameter L is 9.144
m. The cross section areas are the design variables. They have an initial value of
153.938 cm2, and are constrained by a lower and upper bound, with values of
10.425 cm2 and 216.111 cm2, respectively.

This structure will be optimized by means of minimizing its volume,
considering deterministic optimization and reliability based design optimization.
The maximum displacement in the node 5 is selected as constraint, so the
deterministic problem is formulated as:

minF (x) (16)

subject to:

w5 � wmax (17)

In this case, the maximum displacement allowed on node 5 is wmax = −5.08
cm. When considering reliability based design optimization, the constraints are
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random quantities and the problem is formulated as:

minF (x) (18)

subject to:
βi � βmin (19)

where βmin = 3, which corresponds with a probability of failure of 1.35 × 10−3.

Figure 3: Ten bar truss structure.

Figure 4: Ten bar truss objective
function.

Figure 5: Ten bar truss reliability
constraint.

Figure 6: Convergence  of  design
x7.

Figure 7: Convergence  of  design
x10.variable variable
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Table 1: Ten bar truss results summary.

Method FOSM FORM TANA AMV AMV+ Determ.

x1 216.111 144.240 144.850 162.213 145.584 109.340

x2 10.452 43.625 10.452 10.452 10.452 10.452

x3 166.594 140.847 109.968 130.792 107.569 85.573

x4 109.601 46.627 67.993 76.687 68.750 50.003

x5 10.452 32.147 10.452 10.452 10.452 10.452

x6 10.452 43.604 10.452 10.452 10.452 10.452

x7 58.327 81.734 43.921 47.295 41.798 35.642

x8 159.494 79.664 99.972 114.812 102.393 75.551

x9 151.582 50.421 96.073 109.461 96.462 70.843

x10 10.452 42.456 10.452 10.452 10.452 10.452

F 2.687 2.053 1.794 2.026 1.794 1.389

Iterations 22 22 29 25 23 29

Evaluations 3410 504,406 175,605 4590 197,676 869

As it is shown in figures 4 to 7 and in table 1, TANA and AMV+ methods
reach similar objective function values and AMV has an increase of 13% in its
objective function value with respect to them. In the case of the FOSM method,
the result obtained has an increase of 50% with respect to TANA and AMV+,
due to the differences on the value obtained for the reliability index at the initial
design. As expected, deterministic design converges into a lower value. The most
expensive methods are AMV+ and TANA with 197,000 and 175,000 evaluations,
respectively. The methods requiring less iterations are FOSM and AMV, with 3400
and 4600 evaluations, respectively.

Figure 8: Twenty-five bar 2D truss structure.
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Table 2: Twent five bar 2D truss design variables.

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

Initial point 15 0.5 15 0.5 15 0.5 2 0.1 2 2 0.1 0.1 2

Table 3: Twent five bar 2D truss results summary.

Method FOSM FORM TANA AMV AMV+ Determ.

x1 13.350 12.949 12.741 12.564 13.418 12.998
x2 0.100 0.100 0.100 0.100 0.100 0.100
x3 13.535 13.351 13.226 13.207 13.377 12.957
x4 0.434 0.439 0.436 0.432 0.314 0.315
x5 15.367 15.109 15.346 15.850 14.791 14.373
x6 0.100 0.100 0.100 0.100 0.100 0.100
x7 1.828 1.697 1.837 1.827 1.234 1.319
x8 0.100 0.100 0.100 0.100 0.100 0.100
x9 2.381 2.336 2.406 2.461 2.850 2.691
x10 1.741 1.790 1.761 1.748 1.172 1.151
x11 0.100 0.100 0.100 0.100 0.100 0.100
x12 0.100 0.100 0.100 0.100 0.100 0.100
x13 2.305 2.279 2.339 2.397 2.319 2.256
F 0.433 0.425 0.426 0.429 0.421 0.409
Iterations 17 18 17 14 42 30
Evaluations 1050 182,109 58,458 1175 213,441 602

4.2 Twent five bar 2D truss

Figure 8 shows the geometry of a 25 bar 2D truss structure. The load case in study
is composed by five loads applied on the nodes of the lower bars. The value of
these five loads is supposed to be equal, being a random variable with a Gumbel
distribution. The mean value is 286.5 kN, and the COV is 0.1. The material used
in this truss is steel, having deterministic values the density and the Poisson’s
coefficient, with 7.85 t/m3 and 0.3, respectively. Young’s modulus is a random
variable with a normal distribution, with mean 2.1× 105 MPa and COV 0.05. The
dimensions of the truss are deterministic values and the design variables are the
cross section areas of the bars, with the initial values shown in table 2, constrained
by a lower and upper bound, with values 0.1 cm2 and 1000 cm2, respectively. The
maximum displacement allowed on node 10 is -2.5 cm.

-y

-y

-y
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Figure 9: 25 bar 2D objective function.
Figure 10: 25 bar 2D reliability
constraint.

Figure 11: Convergence of design
variable x1.

Figure 12: Convergence of design
variable x4.

As is shown in table 3 and figures 9 to 12, the five reliability methods reach
similar design variable and objective function values, with a slightly higher
objective function value in the case of the FOSM method, with a relative increase
of 2%. The reason of this phenomenon is the different reliability index obtained
with the FOSM method with respect to the others. It is also remarkable the fact that
the deterministic optimization reaches a value only 4% lower. This is due to the
low sensitivity that the loads have with respect to the structural displacements. In
the AMV+ case, as it is shown in figure 9, the number of needed iterations is twice
as much as the other methods, but in the last 30 the algorithm is converging around
the neighbourhood of the solution, so the convergence is similar in all the cases,
reaching acceptable values over the 15th iteration. Focusing now on the number
of needed evaluations, the FOSM and AMV methods are the least expensive, with
only over 1100. TANA follows them with over 58,500 and FORM and AMV+ are
the more expensive, with 182,000 and 213,000, respectively.

4.3 Twent five bar 3D truss

Figure 13 shows the geometry of a 25 bar 3D truss structure. Four loads are applied
in nodes 1, 2, 3 and 6 with components (0.1P, P,−P ), (0, P,−P ), (0.05P, 0, 0)

-y
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Figure 13: Twent five bar 3D truss structure.

and (0.06P, 0, 0), respectively. The value P is taken as a random variable with a
Gumbel distribution where the mean value is 25.58 kN and the COV is 0.15. The
material is aluminum and its properties are the same as in the section 4.1. Design
variables have an initial value of 19.634 cm2, and are constrained by a lower and
upper bound, with values 0.636 cm2 and 50 cm2, respectively. The maximum
horizontal displacement allowed on node 2 in the y axis is −0.889 cm.

In this case, different results are obtained depending on the method (figures 14
to 17 and table 4). TANA and AMV+ methods reach similar objective function
values, 0.213. In the case of the FOSM method the result obtained has an increase

Table 4: Twent five bar 3D truss results summary.

Method FOSM TANA AMV AMV+ Determ.

x1 0.636 0.636 9.638 0.636 0.636

x2 6.406 0.636 8.173 0.636 0.636

x3 21.895 23.312 40.417 23.905 12.332

x4 0.636 1.451 0.636 0.636 0.636

x5 8.132 12.909 23.551 11.583 6.780

x6 6.978 4.953 11.219 5.117 2.709

x7 6.621 1.182 0.839 1.054 0.636

x8 21.895 25.224 50 25.094 13.479

F 0.250 0.214 0.431 0.213 0.115

Iterations 41 47 27 45 58

Evaluations 3051 160,857 2668 153,267 1386

-y

-y
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Figure 14: 25 bar 3D objective Figure 15: 25 bar 3D reliability
constraint.

Figure 16: Convergence of design
variable x2.

Figure 17: Convergence of design
variable x6.

of 17%, but in the AMV case, the objective function doubles those values,
reaching 0.431. The reason is the different reliability index obtained with the
AMV and FOSM method with respect to the others; for the initial point, the
reliability index of each one of those methods has a value of 2.64 and 3.68,
respectively, instead of 4.32 obtained with FORM, TANA and AMV+. This means
that the probability of failure is higher and, therefore, the design variables and,
consequently, the objective function will increase. It is also remarkable the fact
that the FORM method does not reach convergence. As is shown in figure 14,
from 8th iteration starts to oscillate into three cyclical iterations. Deterministic
optimization converges into a result 50% less than the obtained by RBDO.

All the methods reach convergence with a similar number of iterations with
around 45, except AMV that finishes with only 27 iterations. Deterministic needs
58. Also, the most expensive methods, in terms of number of evaluations, are
TANA and AMV+ with 160,000 and 153,000, respectively. The less computational
intensive methods are the FOSM and AMV, with 3000 and 2600 evaluations,
respectively.

function.
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5 Conclusions

In this work, a review of some existing procedures of reliability analysis and their
capabilities has been carried out in a RBDO framework. Three examples have been
used to illustrate the performance of the methods employed in the study. Finally,
some conclusions can be drawn.

As a general conclusion it can be said that depending on the reliability method
used, the results of the RBDO can have slight changes. In particular, FOSM
and AMV methods converge to less accurate values of reliability index than the
other methods. This fact has an influence in the optimization results, which offer
different values for the objective function.

Also, some differences were appreciated in terms of computational cost.
FOSM and AMV are the fastest methods and FORM is the one requiring most
iterations and does not always converge. Finally, AMV+ and TANA offer a good
compromise between accuracy and efficiency.
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