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Abstract 

An inverse problem of elastic theory for inhomogeneous bodies is normally used 
for identification of the dependencies of a material’s mechanical properties of 
coordinates where the stress state of the body will be specified. It is known that 
in thick-walled cylindrical or spherical shells under internal or external pressure 
the highest stresses are close to the inner surface of the shell. Several solutions of 
inverse problems (depending on the elastic modulus along the radius at which 
the equivalent stress in the shell will be constant) are obtained in this paper with 
the use of conventional strength theories. Corresponding shells could be called 
equal stress shells. If an investigator changes the elastic modulus of the material 
its mechanical properties change as well. It is shown that for some materials the 
investigator can create a model of an equal strength shell with an equivalent 
stress at each point, which is equal to the strength of the material. This paper is 
devoted to creating multi-layered shells in which the elastic modulus in each 
layer is determined by the results of solving inverse problems. 
Keywords: elastic theory, inverse problem, thick-walled shells, inhomogeneous 
bodies, stress state, strength, equivalent stress, multilayer shells, maximum shear 
theory, maximum-strain-energy theory. 

1 Introduction 

The aim is to develop models of thick-walled shells which are close to equal 
strength. The modulus of elasticity of the material, which depends on the radius 
at which the corresponding equivalent stress will be constant at all points of the 
shell [1], is determined with the use of solutions of inverse elasticity problems 
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for inhomogeneous bodies for various strength theories. Analytical and 
numerical methods are used for the solution of inverse problems. A special so-
called coefficient of efficiency of design β (the ratio of the maximum limiting 
pressure in an inhomogeneous shell (with the variable modulus of elasticity) to 
the corresponding pressure in a homogeneous shell) is introduced in this paper. 
We use the criterion of strength as given by Batrakov [2] and the model of 
Karpenko [5] for analysis of the corresponding shells. The coefficient β for 
different compositions of concrete and different loading conditions is normally 
within the interval 1.5–2.6.  

2 Ideas 

Fig. 1 shows a cross section of a thick-walled cylindrical shell, loaded inside 
with constant pressure ݌௔ (fig. 1,a). For a homogeneous material (shown by 
dotted lines in fig. 1,b) the stress σ஘ reaches a maximum near the inner contour 
of the cylinder (fig. 1,c), and for a heterogeneous material (solid line), where 
ܧ ൌ  ሻ, the diagram σ஘ aligns more closely to the constant value. The idea ofݎሺܧ
the method of optimizing in the strength of the thick-walled shells consists in the 
creation of such shells from heterogeneous materials. For this purpose we solve 
the inverse problem of elasticity of inhomogeneous bodies for the respective 
shell. The essence of the inverse problem is the following. Assuming that for all 
points of the shell the equivalent stress σ଴, corresponding to a particular theory 
of strength, is constant, we can define the proper function ܧሺݎሻ. This shell is 
called an equal-stress shell. 

 

 

Figure 1: Stress state in a thick-walled cylinder under the action of internal 
pressure. ––– nonhomogeneous material, - - - homogeneous 
material. 

3 The solutions of inverse problems for a thick-walled 
cylinder for two classical theories of strength 

Below for example are the solutions of inverse problems for maximum shear 
theory and maximum-strain-energy theory. 
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3.1 The basic equations 

The solution of the direct problem of the theory of elasticity of inhomogeneous 
bodies in cylindrical coordinates with axial symmetry is reduced to a differential 
equation [1] 

3 1 ν
σ σ σ 0 (1)r r r

E E

r E r E

        
 

 

Here the modulus of elasticity E=E(r). The essence of the direct problem is to 
determine the stress state at a known function of E(r). As mentioned above, the 
essence of solving the inverse problem is to determine the function E(r) in which 
the equivalent stress σ଴ (for each theory of strength its own) will be constant 
throughout the structure. We consider a thick-walled cylindrical shell, where the 
inner radius is equal to a and the external radius is equal to b, with the loaded 
constant internal (pa) and external (pb) pressures. In this case, the boundary 
conditions have the form: 

 ,ar     ;ar p       ,br   .br p  (2) 

3.2 Maximum shear theory 

3.2.1 Option 1 
If circumferential stresses ߪఏ ൐ 0 the principal stresses are defined as follows: 

1 ,   rz2  and r3 . In view of this condition the 

equal-stress state is written in the form constr  0 . Substituting this 

into the equilibrium equation  

 ,0



 

rdr

d rr

 
(3) 

we obtain  

 rr
0

 
(4) 

     The solution of this differential equation is a function  

 Arr  ln0  (5) 

     From the boundary conditions (2) we find the constants A  and 0 :  

 ;
lnln

lnln

ab

bpap
A ab





ab

pp ba

lnln0 



 

(6) 

     From eqn (3) we obtain an expression for  :  

   Ar  ln10  (7) 

     Substituting (5) in eqn (1), we obtain the equation for modulus  :rE   

    0
ln1

2

0

0 



 E

kArkr
E

 
(8) 

where )1/()21( k . 
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     After separation of variables in eqn (8), integrating and using the initial 
condition ( ;ar  0EE  ), we obtain the relationship  rE :  

       
    

k

abba

abba

bpapkakpp

bpapkrkpp
ErE

2

0 lnlnln1

lnlnln1











 . (9) 

3.2.2 Option 2 
Under the action in the circumferential direction ߪఏ ൏ 0 the principal stresses are 
equal: r1 ,   rz2  and 3 . With this in mind the 

equal-stress condition takes the form 0 r = const . In this case we 

obtain a solution that coincides with the solution given in Option 1. 

3.2.3 Option 3 
Under the action in the circumferential direction ߪఏ ൏ 0 the principal stresses 
can be determined also as follows:   rz1 , r2  and 3σ σ .  

With this in mind the equal-stress condition after some changing is the form: 
       kk r 21 const0 . Expressing from this equality   and 

substituting it into the equilibrium eqn (3), we obtain 

 
 

r
k

r
k r

r
02







 
(10) 

     The solution of this differential equation is the function: 

 
 
k

krA k

r
02 




 
(11) 

     We can define constants A  and 0  using the boundary conditions (2): 

 ;
kk

ba

ab

pp
kA

 




   
kk
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k
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ab

apbp

k

k












20
 

(12) 

     Substituting the stress (11) into the resolving eqn (1) we obtain a 
homogeneous linear differential equation for the distribution of the modulus of 
elasticity: 

 

  01

0



  Er

A
E k

 
(13) 

     After integrating eqn (13), with the condition ( ar  ; 0EE  ) we obtain the 

dependence  rE : 

 

   










  kk ar

k

A
ErE

0
0 exp

 

(14) 

     In fig. 2 diagrams of the dependence  rE  are presented that are calculated 

using the values: 1.01  , ,25.02  4.03  , 2ab , 6ap MPa, 12bp

MPa.  
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     For values of Poisson's ratio 1.01  and 25.02  the dependence  rE  is 

determined by solving the optimization problem for a cylinder corresponding to 
option 3, since the stress relation to this variant is  rz . However, for 

the value 4.03  the solution of the optimization problem for a cylinder 

corresponds to option 1, since the stress relation to that decision has 

 zr , taking into account amendments to the sign of the equivalent 

stress. As follows from fig. 2 the influence of Poisson's ratio for the distribution 
function  rE  is significant. In fig. 3 as an example the distribution of stresses in 

the inhomogeneous (equal-stress) cylinder in the case 25.02   is shown, as 

well as that in a homogeneous cylinder with the same sizes and loads. 
 

                       
 

Figure 2: Distribution of the 
modulus of elasticity 
in the equal-stress 
cylinder.  1 – ν=0.1, 2 
– ν=0.25, 3 – ν=0.4 

 
Figure 3: Stress diagrams in the 

equal-stress cylinder. 
 ––– nonhomogeneous 
material, - - - homo-
geneous material 

     Once again we will underline that the equivalent stress σ0 at all points of the 
cylinder is the same. Thus, we have found the model of the equal-stress 
structure. However, such a cylinder is not equal-strength. To learn how to get the 
model of the equal-strength cylinder we will discuss things further. 

3.3 Maximum-strain-energy theory 

The fourth theory of strength in the coordinate system 1σ , 2  and 3  represents 

the surface of a circular cylinder 

   2
0133221

2
3

2
2

2
1   (15) 

So depending on what type of structure (disk or cylinder) is calculated, the 
configuration of the surface determining the strength of the material of the 
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structure will vary. Therefore, to best present the whole picture it is useful to 
consider separately the calculation of the disk and the cylinder. Below we 
consider the construction of the equal-stress model of the cylinder. 
     The principal stresses in this case are defined by:   rz1 , 

r2  and 3 . In view of this condition of equal-strength (15) can be 

rewritten as 

       constrr  
2
0

22222 12211  (16) 

     The eqn (16) describes an ellipse, so the solution is a necessary search using 
parametric expressions for the stresses: 

 























  cos

3

1
sin

2
,cos

3

1
sin

2
00 k

k

k

k
r

 

(17) 

     Substituting into the equilibrium eqn (1) the expression (17), we obtain  

 

0tg
2

12

2

3
















 k

k
r

d

dr

 

(18) 

     The solution of this differential equation is a function 

 














 cos

2

2

3
exp

k

k
Ar

 

(19) 

     The constants A , 0  and the parameters a , b   are defined in the general 

case numerically, using the boundary conditions (2). Substituting the stress r  

from (17) and the expression for the coordinate r from (19) into the resolving 
eqn (1), after transformations we obtain an equation for determining the 
distribution of the modulus of elasticity  E : 

 
0

cossin3

cos32








E
kd

dE

 
(20) 

     After separation of variables in eqn (20) and integrating with the initial 
condition ( ;a  0EE  ), we find the function  E : 

 

   









 cossin3

2

3
exp

k
CE

 

(21) 

where  

k2

3
 ;   

1

0 cossin3
2

3
exp


























 aaak

EC . 

     Given that the parameter k depends on   on the basis of expression (21), we 
can investigate the effect of Poisson's ratio on the character of the distribution 
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function  rE . As a result of the calculation solutions were obtained which differ 

from those shown in fig. 2 by no more than 5%. Stress distributions in a 
nonhomogeneous structure for this theory of strength show similar curves to 
those in fig. 3.  
     This is not surprising since, as we know, the results of the strength of the 
maximum shear theory and the maximum-strain-energy theory in all problems of 
theory of elasticity do not give a contrast of more than 14%. 
     Summarizing the results obtained in section 3.3, it is possible to draw the 
following conclusions. Creating equal stress thick-walled shells is possible by 
changing the modulus of elasticity of the material. Thus, the received solutions 
can be applied to materials for which it should be possible to make modifications 
of the modulus of elasticity of materials. Such materials include fiberglass, 
polymers and other composites.  

4 From equal-stress to equal-strength structures 

4.1 Some mechanical properties of concrete 

In order to build a model equal-strength structure it is necessary that with a 
change of structure of the material its strength changes more slowly than the 
modulus of elasticity. An example would be modified cement concrete. Table 1 
presents the main characteristics of this concrete [2]. Another example is 
polymer concrete filled silica flour [3] (see Table 2). It is evident that in these 
materials with a significant change in modulus of elasticity the strength varies 
slightly.  

Table 1:  Mechanical properties of concrete with the addition of microsilica. 

№  
Quantity microsilica in 
the concrete mix, kg/m3 

Prizm strength 
,bR МPa 

Elasticity 
modulus 

410, 
bE MPa 

1 - 42,5 3,62 
2 116 44,0 3,01 
3 142 38,0 2,16 

Table 2:  Mechanical properties of polymer concrete filled silica flour. 

№  
Level of filling 

silica flour 
Prizm strength 

,bR МPa 

Elasticity modulus  
410, 

bE MPa 

1 - 142 3,10 
2 50 146 4,50 
3 100 160 7,10 
4 200 148 10,5 
5 300 132 13,7 
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     For the correlation of strength and stiffness properties of the material the 
dependence  R f E   is introduced which allows agreement amongst 

themselves of the strength and deformation characteristics of the material. This 
function approximates the experimental data for the selected material. Using this 
dependence, we can solve the inverse problem to model the equal-strength 
structure. Nevertheless the structure may not be equal-stress, but the condition of 
equal-strength is ensured by the equality of the equivalent stress σ଴ at each point 
of the body to the strength of the material R  at this point.  

4.2 The inverse problem for an equal-strength cylinder  

This section describes the method of optimization of a cylindrical thick-walled 
shell of polymer-concrete based on the criterion of the strength of P. Balandin. 
This condition is confirmed experimentally for concrete in the field of all-round 
non-uniform compression [4]. The strength condition of P. Balandin in the 
coordinate system 1 , 2  and 3  represents the surface of a paraboloid of 

revolution. Given the fact that the compressive stresses are contained within it 
with a minus sign, this expression is written as follows 

      ,321133221
2
3

2
2

2
1 btbbtb RRRR  (22) 

where bR  is the design strength of concrete under axial compression (prism 

strength), and btR  is the design strength of concrete under axial tension. Since 

the concrete works poorly in tension it is possible to put 0btR  in (22). The 

application of this provision greatly simplifies the solution of the optimization 
problem. With this simplification expression (22) can be rewritten as:  

     0321133221
2
3

2
2

2
1  bR  (23) 

     In concrete, as follows from [5], in the limit state under the action of 
compressive stresses Poisson's ratio can reach values close to 0.5. Therefore, for 
further calculations we take . Assuming that the cylinder is in the plane 
strain conditions, the principal stresses can be determined as follows: 

  rz1 , r2  and 3 . With this in mind, the strength 

condition (23) takes the form: 

       05.175.05.175.0 22   rbrr R  (24) 

     Eqn (24) describes a parabola in the implicit form, so the solutions need to be 
presented as a parametrical expression for the stresses r  and   [6]: 

    .25.05.0,25.05.0 22   bbr RR  (25) 

     The relationship between the strength and the rigidity properties of the 
material is given by 

5,0
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 bb ER   (26) 

where the coefficients   and  are determined on the basis of experimental data. 

In solving the problem, we use the condition that the Poisson's ratio 5,0 . 
From this it follows that in the plane strain condition 

 r  (27) 

     Substituting (27) into the condition of compatibility of the strain components, 
we obtain the equation 

 02 



 

rdr

d

 
(28) 

     The solution of eqn (28) is the expression 

 
2
0

r




 
(29) 

where 0  remains unknown. 
     To obtain the dependence of the modulus of elasticity of concrete bE from the 

radius we will use the expression for the strain   

   r
bE

  1
1

 
(30) 

     Substituting into (30) the value of Poisson's ratio 5.0 , and the expression 
(29), (25) and (26), after transformations we obtain  

 

   
   




3
0

3

214

21

r

r
Eb

 

(31) 

     Substituting (26) and (31) into eqns (17), we obtain expressions for the 
stresses in terms of the parameter   

 

 
    

 
    .2143

41
,

2143

4125
3

0

2
0

3
0

2
0









 

rr
r

 

(32) 

     After substituting (32) in the equilibrium eqn (3) after transformations we 
obtain the nonlinear differential equation 

 

   
    32

0

42
0

211621

21238

3

2

r

rr

d

dr







 

(33) 

where  is a constant defined by the expression 

 

 

    3
0

0

0 21
4

a
E

R
a

b

b 
 

(34) 

0
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     Here a ,  0
bR  and  0

bE  are the initial (at ar  ) values of the parameter  , 

the design strength of concrete under axial compression and the modulus of 
elasticity of concrete. Equality (34) is obtained by substituting the following 
quantities into (30): 

 5.0 , 
3
0

a


 ,  0

bb EE  ,  

 

   2
0

4125
12 aa

b
r

R
 , 

   2
0

41
12 a

bR


 
(35) 

To solve eqn (33) used the Runge-Kutta fourth order method. 

4.3 Calculation example  

Below, the solution for the thick-walled cylinder using the method given above 
on the basis of V. Paturoyev's experimental data [3] is presented. 
     The calculation was carried out using the following basic data: 

  40 101.3 bE MPa,   0.1410 bR MPa, , 6.1ab , 5.0 . To 

determine the coefficients in the formula (26), we applied the standard 
mathematical functions of MathCAD 13, so therefore we obtained the following 

values: 7.126 MPa and 4106.4  . 

     For the first three lines of tab. 2. Fig. 4 shows the approximating dependence 
for polymer-concrete as well as the experimental points for which it is built. 
 

   
 

Figure 4: The relationship 
between strength and 
modulus of elasticity 
of polymer-concrete. 

Figure 5: Stresses in an equal-
strength polymer-concrete 
cylinder. 

 
     The solution of (33) is obtained by the Runge-Kutta fourth order method for 
the initial value of the argument 071.3a . The final value of the argument 

222.2b . The values of the pressures on the cylinder are: 1.549ap MPa 

5.1ba pp

198  Computer Aided Optimum Design in Engineering XII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 125, © 201  WIT Press2



and 0.366bp MPa respectively. The value of pressure ap  is found as follows. 

In the expression for the normal radial stress from (32) we substitute the values 
of the constants   and , the value of the parameter a , and also the value

ar  . As a result we find 1.549)(  arr MPa. Using the first of relations 

(2) we find the value ap  specified above. The pressure  ݌௕ equals 1.5 .ap  

     Stresses r ,   and z  are shown in fig. 5. The resulting load in the equal-

strength cylinder can be compared with the load for a homogeneous structure. By 
condition (24) the greatest equivalent stress is reached at an inner surface of the 
cylinder. For a homogeneous structure the value of the internal pressure ݌௔௛௢௠ 
can be found by the formula 

 

  
 2

02










ss

ssR
p

r

rbhom
a

 

(36) 

where 1rs  and  0
bR  is the value of the design strength of polymer-concrete 

at the point where ar  ,     22222 2 abppbabs ab  . The expression 

(36) is obtained as follows. We denote the stresses in the homogeneous cylinder 
as 

 r
hom
ar sp ;   sphom

a  (37) 

where functions rs  and s  are obtained by solving the Lame problem for a 

thick-walled cylinder under boundary conditions 

 ,r a  .,;1 dsbrsr    (38) 

     Here d is the ratio of the external pressure to the value of internal pressure. 
The design strength is assumed to be constant 

  0
bb RR  . (39) 

     After substituting expressions (37) and (38) into eqn (24) we can find the 

pressure hom
ap . 

     Calculation by formula (36) gives the pressure ݌௔௛௢௠ ൌ213.5MPa. Above, we 
have determined the limit load for the equal-strength inhomogeneous structure 
௔௜௡௛݌ ൌ549.1MPa. To determine the effect of the optimized model of the 
inhomogeneous equal-strength structure we introduce the efficiency ratio 
β ൌ  ௔௛௢௠, which shows how many times the external loads on the body can݌/௔௜௡௛݌
be increased, in comparison with the homogeneous analogue. For the equal-
strength cylinder considered in this section β=2.57. 

4.4 From the model to the structure 

Creating a thick-walled cylinder where the modulus of elasticity varies along the 
radius by a continuous law is rather difficult.  
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     One way of solving the direct problems of the theory of elasticity of 
inhomogeneous bodies is to replace the continuous function ( )E r  with a 

piecewise-homogeneous function. By analogy, the creation of optimized thick-
walled cylinders consisting of several layers is proposed. Thus the modulus of 
elasticity of the material in each layer is determined by solving the inverse 
problem given above in which the continuous function ( )E r  is defined. 

     The solution of the problem for the multilayered cylinder is rather simple. In 
each layer it corresponds to the solution of a Lame problem, and for definition of 
the constants the boundary conditions (2) and the conditions of ideal contact on 
boundaries between layers are used: 
 1,,1;   iririi uu

 
(40) 

where i  is the layer number, u  is the radial displacement, and r  is the radial 

stress. One of the fundamental questions is – how to choose the value of iE  in 

the i -th layer. As shown in the analysis, in order to satisfy the condition of 
strength (23) at all points of the layer it is necessary that iE  is equal to the value 

of ( )E r  at the left edge of the layer.  

     Stresses r ,   and z  for a three-layered cylinder are shown in fig. 6 and 

diagrams of equivalent stresses are given in fig. 7. 
 

                      

Figure 6: Stress distribution in a 
three-layer cylinder. 

Figure 7: Strength Rb (1) and 
equivalent stress (2) in a 
three-layer cylinder. 

     Let us compare the resulting load on the piecewise-homogeneous cylinder 
with a load for a homogeneous structure. Using (36), we can find the value of 
internal pressure: ݌௔௛௢௠ ൌ213.5MPa. Comparing this pressure with the load for a 

piecewise-homogeneous cylinder (  )3(
aa pp 5.391)(  arr MPa) we 

obtain the value of the coefficient effectiveness: β ൌ ௔݌
ሺଷሻ/݌௔௛௢௠ ൌ1.83. 
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     Similar calculations for the cylinder, consisting of four and five layers, give 

the following results: β ൌ ௔݌
ሺସሻ/݌௔௛௢௠ ൌ1.99, β ൌ ௔݌

ሺହሻ/݌௔௛௢௠ ൌ2.09.  
     It is obvious that with increasing number of layers in the cylinder the 
coefficient β will be close to the value β = 2.57, which corresponds to a model 
with continuous heterogeneity. Thus the developed multilayer structures can be 
called close to equal strength. 

5 Conclusions 

In this paper based on solving the inverse problem of elasticity theory of 
inhomogeneous bodies we have developed a method of changing the definition 
of the modulus of elasticity along the radius at which the equivalent stress in a 
thick-walled cylinder at each point is equal to the strength of the material. This 
cylinder is an equal-strength structure. Since in practice to create such a cylinder 
is hard enough, we propose the construction of multi-layer structures, in which 
the modulus of elasticity in each layer is determined by solving the inverse 
problem. This cylinder is close to being an equal-strength structure. 
     Generally, such shells may be formed from various materials (concrete or 
reinforced concrete, steels, polymers, etc.). Practical applications of these shells 
will be the result of collaborative work of specialists in mechanics, chemists and 
technologists. 
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