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Abstract 

Thin-walled structures such as shells and folded plates are extensively used in 
various industrial products. In this paper, a free-form optimization method is 
presented that is aimed at giving a function to thin-walled structures. As a 
concrete target, a method to achieve a desired deformation, or to control a static 
deformed shape to a desired one, is proposed for the design of linear elastic shell 
structures. As an objective functional, we introduce a squared error norm of a 
deformed shape on its prescribed surface. It is assumed that the shell is varied in 
the normal direction to the surface and that the thickness is constant. A 
distributed-parameter shape optimization problem is formulated, and the shape 
gradient function for this problem is theoretically derived. The non-parametric 
free-form optimization method for shells, which was developed by the author, is 
applied to solve this problem. With this method, an optimal arbitrarily formed 
shell with smoothness can be obtained while minimizing the objective 
functional. The calculated results show the effectiveness of the proposed method 
for the optimal free-form design of thin-walled structures with a desired 
deformed shape. 
Keywords: optimum design, shape optimization, shell, shape identification, 
inverse problem, deformation control, traction method. 

1 Introduction 

Thin-walled or shell structures have high load-carrying capacity in spite of their 
thinness and lightness. A smart and simple thin-walled structure may be created 
by adding a function to them without using any actuators. As such a function, a 
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desired deformation, i.e., obtaining a given displacement distribution, against an 
external force is considered in this study. An optimization technique is necessary 
for designing such a structure. For executing the shape design of a thin-walled 
structure with a high level performance yet using the minimum amount of 
material, it is especially necessary to optimize its curvature distribution while 
satisfying the design purposes. 
     The author and colleagues have been developing a free-form optimization 
method, called the “H1 gradient method for shells” for designing the optimal 
smooth free-form surface of thin-walled structures with curvatures. In our 
previous studies, we proposed solutions to stiffness problems [1] and vibration 
problems [2] of shell structures. Focusing on shape optimization of shell 
structures, the methods can be categorized into parametric and non-parametric 
methods in terms of design variables. Although most previously proposed shape 
optimization methods for shells [3, 4] are parametric methods, which require 
parameterization of the shape in advance and the obtained shape is strongly 
dominated by the parameterization process, our method is classified as a non-
parametric method. The proposed method and its features will be described in 
the following sections. Another non-parametric method with a filter for 
smoothing was presented by Bletzinger et al. [5]. 
     In this study, a shape identification problem for linear elastic thin-walled 
structures is newly solved with the H1 gradient method for shells for the purpose 
of achieving a desired deformed shape under an external force. Controlling the 
displacement distribution to a given desired one can contribute to solving 
stiffness design and compliant design problems of thin-walled structures, which 
means that the solution described here can impart a function to structures by 
simply changing their shapes. This design problem is a so-called compliant 
mechanism design or a homology design, and many related papers proposing 
topology or shape optimization methods have been published [6–10]. However, 
few papers have discussed the use of a non-parametric shape optimization 
method to control the deformation design of thin-walled structures. In this study, 
the desired deformed shape is identified by introducing a squared error norm of a 
deformed shape on its prescribed surface as the objective functional. With the 
free-form optimization method, an optimum thin-walled structure with a smooth 
free-form surface and a desired deformed shape as its function can be obtained 
without any shape parameterization.  

2 Governing equation for a shell as a set of infinitesimal flat 
surfaces 

As shown in Fig. 1(a) and Eqs. (1–3), consider a shell having an initial bounded 
domain 3R   with the boundary  , mid-area A with the boundary A , side 
surface S and thickness h. It is assumed for simplicity that a shell structure 
occupying a bounded domain is a set of infinitesimal flat surfaces as shown in 
Fig. 1(b). 

  1 2 3 1 2 3( , , ) | ( , ) , ( / 2, / 2)x x x x x A x h h3 2R R       ,  (1) 
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 ( , ),   
2 2

h h
A     (2) 

( , )
2 2

h h
S A                                                    (3) 

 
     It is assumed that the mapping of the local coordinate system 1 2( , ,0)x x , 

which gives the position of the mid-area of the shell, to the global coordinate 
system 1 2 3( , , )X X X , i.e., 3 3

1 2 1 2 3: ( , ,0) ( , , )x x X X XR R   , is piecewise 

smooth. The Mindlin-Reissner plate theory is applied concerning plate bending, 
and the coupling of the membrane stiffness and bending stiffness is ignored. 
Using the sign convention in Fig. 1(b), the displacements expressed by the local 
coordinates   1,2,3i i

u


u  can be divided into the displacements in the in-plane 

direction   1,2 
u 

 and the displacement in the out-of-plane direction 3u . In this 

paper, the subscripts of the Greek letters are expressed as 1,2  , and the tensor 
subscript notation uses Einstein's summation convention and a partial differential 
notation with respect to the spatial coordinates ,( ) ( ) /i ix     . 
 

 

Figure 1: Shell geometry as a set of infinitesimal flat surfaces. 

     The Mindlin-Reissner plate theory posits that 

 33 0  ,  (4) 

 1 2 3 0 1 2 3 1 2( , , ) ( , ) ( , )u x x x u x x x x x    , (5) 

 3 1 2 3 1 2( , , ) ( , )u x x x w x x , (6) 

where  0 1,2 
u  

, w and   1,2 
  



 express the in-plane displacements, out-of-

plane displacement and rotational angles of the mid-area of the shell, 
respectively. 
     Then, the weak form state equation relative to 0( , , )w Uu   can be expressed 

as Eq. (7) by substituting Eqs. (4–6) into the variational equation for the three-
dimensional linear elastic body, eliminating 33 . Forces acting relative to the 

local coordinate system 1 2( , ,0)x x  on the domain A and the sub-boundary 
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(b) D.O.F. and sign convention   
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( )gA A    are defined as follows: an out-of-plane load q per unit area, an in-

plane loads   1,2
f  

f  and an out-of-plane moments   1,2
m  

m  per unit 

area, an in-plane loads   1,2
N  

N  per unit length, a shearing force Q per unit 

length and a bending moments   1,2
M  

M  per unit length. 

 0 0 0 0 0(( , , ), ( , , )) (( , , )),   ( , , ) ,   ( , , )a w w l w w U w U   u u u u u     , (7) 

where ( )  expresses a variation. In addition, the bilinear form (  ,  )a 　   and the 

linear form ( )l 　  are defined respectively as shown below. 

0 0 0 , 3 , 0 , 3 ,(( , , ), ( , , )) { ( )( )a w w C u x u x        
   u u    

, ,( )( )}SC w w d         , 

      ( 0 , 0 ,{ }B M S

A
c c u u kc dA                )  (8) 

 0 0 0(( , , )) ( ) ( )
gA A

l w f u m qw dA N u ds M Qw ds        


      u  ,  (9) 

where , , , 1,2{ }C       and , 1,2{ }SC     express an elastic tensor including 

bending and membrane stresses, and an elastic tensor with respect to the shearing 
stress, respectively. , , , 1,2{ }Bc      , , 1,2{ }Sc     and , , , 1,2{ }Mc       express an 

elastic tensor with respect to bending, shearing and membrane component in 

case of considering the relationship 
/2

/2
( ) ( ) 

h

h
d dzdA

 



     , respectively. In 

addition, , 1,2{ }     and 1,2{ }    express the curvatures and the transverse 

shear strains which are defined by the following equations. The constant k 
denotes a shear correction factor (assuming k=5/6). 

 , ,

1
( + )

2       , (10) 

 ,w     .  (11) 

     It will be noted that U in Eq. (7) is given by the following equation. 

 1 5
01 02 1 2{( , , , , ) ( ( )) |U u u w H A     satisfy the given Dirichlet condition on each 

subboundary}, (12) 

where 1H  is the Sobolev space of order 1. 
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3 Free-form optimization problem of shell structure 

3.1 Domain variation 

Consider that a linear elastic shell structure having an initial domain  , mid-
area A, boundary A  and side surface S undergoes domain variation V (design 
velocity field) in the out-of-plane direction such that its domain, mid-area, 
boundary and side surface become s , sA , sA  and sS , respectively as shown 

in Fig. 2. It is assumed that the plate thickness h remains constant under the 
domain variation. The domain variation at this time can be expressed by a 
mapping from   to s , which is denoted as 

: ( ) ,  0S s sT s     X X X  (ε is a small integer) given by 

( ),   ( )s sT T  s sX X . The subscript s expresses the iteration history of the 

domain variation. Assuming a shape constraint is acting on the variation in the 
domain, the infinitesimal variation of the domain can be expressed by  

 ( ) ( )s s sT T s   X X V , (13) 

where the design velocity field is given as ( ) ( ) /  sT s  sV X X . The free-form 

optimization method explained later is a method for determining the optimal 
domain variation V of shell structures.  
 

 

Figure 2: Out-of-plane shape variation V. 

3.2 Shape identification problem for achieving a desired deformed shape 

Let us consider a free-form optimization problem for achieving a given desired 
deformed shape of a thin-walled structure. This problem is formulated in a 
function space, and the shape gradient function is theoretically derived using the 
material derivative method as described below. 
     As an objective functional, we introduce a squared deformed shape error 
norm on a prescribed surface. Letting the state equation in Eq. (7) be the 
constraint condition, a distributed-parameter shape identification problem for 
finding the optimal design velocity field V, or (= )sA A s V  can be formulated 

as shown below: 

Given    A                                                              (14) 

A
A 

S

dA 

dAs 

 

SS 

V 

S 



S
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  Find      or sA V                                                  (15) 

       that 0 0ˆ ˆmimimizes    ((( ) ),(( ) ))d    x u z x u z                  (16) 

     subject to     Eq. (7),                                                     (17) 

where ( , )d 　　   is the inner product defined as shown in the following equation. 

 ( , )=
D

i iA
d u v dAu v   (18) 

     The notations 0x +u and ẑ  indicate the position vector of the deformed shape 

and that of a given desired deformed shape, respectively, which are given on the 
prescribed surface DA . 

     Letting 0( , ,w u   denote the Lagrange multipliers for the state equation, the 

Lagrange functional L for this problem can be expressed as 

        0 0 0 0ˆ ˆ( , ( , , ) ( , , )) (( ),( ))L A w w d    u u x u z x u z    

                                0 0 0( , , ) (( , , ), ( , , ))l w a w w u u u    (19) 

     For the sake of simplicity, it is assumed that the sub-boundaries acted on by 
the non-zero external forces N, Q and M do not vary (i.e., V=0), and that the 
forces acting on the shell surface qf, m,  do not vary with regard to the space 

and the iteration history s (i.e., ( f m q    =0). Then, the material derivative L  of 
the Lagrange functional can be derived as shown in Eq. (20) below using the 
formula of material derivative [12]. 
     Letting ( )mid top btm n n = n = n  represent a unit normal vector of the mid-

area, the relationship ( ) = ( )top top btm btm  V n n V n n  is assumed. The notations 
topn  and btmn  denote unit normal vectors that make the outward top and bottom 

surfaces of the shell positive. The notations ( )  and ( )  are the shape derivative 

and the material derivative with respect to the domain variation, respectively 
[12]. 

                  0 0 0ˆ2 ( + , ) (( , , ), ( , , ))L d a w w      x u z u u u   

 0 0 0+ ( , , ) (( , , ),( , , )) ,    l w a w w G C       u u u n,V V    (20) 

 
D D

DA A A A
G G VdA G VdA VdA VdA           Dn,V n n G G   (21) 

 0 , , 0 , , 0 , , 0 , ,{ ( )( ) ( )( )
2 2 2 2

h h h h
G C u u C u u                          

0Hf u Hm Hqw        (22) 

0 0 0 0ˆ ˆ ˆ ˆ( )( )+2( )( ),
i i i iD i i i i i i i i j jG H x u z x u z x u z x u z n          (23) 

     Equations (22) and (23) express the shape gradient functions, i.e., the 
sensitivity functions, for this problem. The notation H denotes twice the mean 
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curvature of the surface. C  expresses the kinematically admissible function 

space that satisfies the constraints of shape variation. When the optimality 
conditions with respect to the state variable 0( , , )wu  , the adjoint variable 

0( , , )wu   of the Lagrange functional L expressed by Eqs. (24) and (25), are 

satisfied, 

 0 0 0 0(( , , ),( , , ))= (( , , )),  ( , , )a w w l w w U         u u u u     (24) 

 0 0 0 ˆ(( , , ),( , , ))=2 ( + , )a w w d   u u x u z u  ,  0( , , )w U   u   (25) 

     Eq. (20) becomes 

 ,    L G C
 n,V V .  (26) 

     Equation (24) is the governing equation for the state variable 0( , , )wu   that 

coincides with Eq. (7), and Eq. (25) is the governing equation for the adjoint 
variable 0( , , )wu  . 

     The shape gradient function derived is applied to the free-form optimization 
method for shells. 

4 Free-form optimization method (H1 gradient method for 
shells) for designing the optimal surface of thin-walled 
structures 

The free-form optimization method developed by the author is based on the 
traction method (often called the H1 gradient method), which is a gradient 
method in a Hilbert space. The original H1 gradient method was proposed by 
Azegami in 1994 [11]. It is a non-parametric shape optimization method that can 
treat all nodes as design variables and does not require any design variable 
parameterization. The original method has been modified for shells by the 
author, and called the free-form optimization method or the H1 gradient method 
for shells. This method varies a shell in the normal direction to the surface, 
making it possible to obtain the optimal free-form shape of shell structures.  
     As shown in Fig. 3, a distributed force proportional to the shape gradient 
function G  is applied in the normal direction to the surface in order to vary the 
surface. The Robin boundary condition (spring constant α>0) is defined for the 
pseudo-elastic shell. This analysis for shape variation is called a velocity 
analysis. As the shape gradient function is not used directly to vary the shape but 
rather is replaced to a distributed force, this makes it possible both to reduce the 
objective functional and to maintain the smoothness, i.e., mesh regularity, which 
is the most distinctive feature of this method. The displacements obtained as the 
optimum shape variation in the velocity analysis are added to the original shape 
to update iteratively the shape. Considering the design velocity 1,2,3= { }i iV V  as 

a combination of the in-plane velocity 0 1,2{ }
  V  and the out-of-plane velocity 

3V , which are defined in local coordinate systems, the governing equation of the 
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velocity analysis for 
1 20 0 3( , , )V V VV  is expressed as Eq. (27) with the 

definition of C , Eq. (28). Equation (27) can be solved using a standard finite 

element code. 

 

Figure 3: Schematic of free-form optimization method (“H1 gradient method 
for shell” with Robin condition). 

 

0 3 0 0 0(( , , ), ( , , )) + ( ) ( , , ) ( , , ) ,   a V w w G wa =  V u V n n, u n, u     

 0 3 0   ( , , ) ,     ( , , )V C w Ca    V u  ,                            (27) 

       
1 2

1 5
0 0 3 1 2, , , ,C V V H A   V{( ) ( ( ))                     

                        }satisfy Dirichlet condition for shape variation on S  (28) 

 
     It is confirmed that this gradient method in a Hilbert spaces reduces the 
Lagrange functional L as follows. When the state equation and the adjoint 
equation are satisfied, the perturbation expansion of the Lagrange functional L 
can be written as 

 , ( ) ( )L G s s    n V, . (29) 

     Substituting Eq. (27) into Eq. (29) and taking into account the positive 

definitiveness of 0 3 0(( , , ), ( , , ))a V waV uq q  and 0( ) ( , , )wa ⋅V n n, u q , based on 

the positive definitiveness of the elastic tensors C  and SC , the following 

relationship is obtained when s  is sufficiently small: 
 

 ( ( ), ( )) ( ) ( ) 0L a s s s s         V, V, V n n, V,     (30) 

 

     In problems where convexity is assured, this relationship definitely reduces 
the Lagrange functional in the process of updating the shell shape using the 
design velocity field V determined by Eq. (27). 
     The advantages offered by this method are summarized as follows: (1) a 
smooth and natural surface without any jaggedness can be obtained because the 
elastic tensor in the velocity analysis serves as a mapping function and as a 
smoother for maintaining mesh smoothness, and its positive definitiveness is the 

-Gn 

V α - Gn 
A 
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necessary condition for minimizing the objective functional. (2) An optimal free-
form surface is created because the number of the design degrees of freedom is 
not limited. (3) It does not require shape design parameterization unlike the basis 
vector method or the parametric surface method because all the nodes can be 
moved as the design variable. (4) Mesh smoothing is simultaneously 
implemented in the shape changing process. (5) It can be easily implemented in 
combination with a commercial FEA code, which means it has generality and 
practical utility for actual design work. (6) It is not necessary to refine the mesh. 

5 Calculated results obtained with free-form optimization 
method 

The proposed method was applied to three fundamental design examples in order 
to verify its validity for controlling the deformed shape of a thin-walled structure 
to a desired shape. 

5.1 Roof problem 1 

Problem definition 1 for a cylindrical roof model is shown in Fig. 4. In the 
stiffness analysis Fig. 4(a), the bottom edges of the roof were simply supported 
and the downward nodal forces were applied along the line on the top. The 
deformed shape region was prescribed in the portion around the loaded line on 
the top as shown in Fig. 4(a). The desired deformed shape was defined as one in 
which the prescribed region was uniformly deformed downward as shown in Fig. 
4(c). In the velocity analysis, the bottom edges were simply supported as shown 
in Fig. 4(b). 
 

 

Figure 4: Problem definition for roof problem 1. 

     The optimal shape obtained and the iteration convergence histories are shown 
in Fig. 5(a) and (b), respectively. It is seen in Fig. 5(a) that both edges on the top 
were folded upward for stiffening the edges. The results in Fig. 5(b) indicate that 
the objective functional converged almost to zero. As a volume constraint was 
not defined in this study, the calculated results show that the initial volume was 

(c) Desired deformed shape (blue) 

Prescribed region for deformed shape  

(b) Velocity analysis(a) Stiffness analysis 
Simply supported 

Desired deformed shape 
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kept almost constant. Figure 6 compares the deformed shapes between (a) the 
initial and (b) the final. The figures show that although the region of the initial 
shape was not deformed uniformly, the region of the final shape was deformed 
downward uniformly as desired.  

 

Figure 5: Calculated results for roof problem 1. 

 

Figure 6: Comparison of deformed shapes of roof problem 1. 

5.2 Roof problem 2 

The problem definition of roof problem 2 is shown in Fig. 7 using the same 
model as in roof problem 1 except for the prescription of the deformed shape. 
The loaded line on the top was defined as the prescribed positions of the 
deformed shape as shown in Fig. 7(a). The desired deformed shape was defined 
as one in which the line around half of the top maintained the position and was 
folded downward linearly at the three-quarters point from the top edges as shown 
in Fig. 7(c).  
 

Prescribed region for deformed shape 
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Figure 7: Problem definition for roof problem 2. 

     Figure 8(a) shows the optimal shape obtained. It is seen that the portions 
around the edges of the top were linearly varied downward according to the 
desired deformed shape, which is reasonable for the prescription. Figure 8(b) 
compares the deformed positions along the prescribed line for the initial, desired 
and final shapes. The graph indicates that the deformed positions of the final 
shape coincided well with the desired positions as intended. 

 

Figure 8: Calculated results of roof problem 2. 

5.3 Table problem 

A table problem is defined in Fig. 9. The initial shape and the boundary 
condition of the stiffness analysis are shown in (a). The bottom edges were 
simply supported and the top surface was uniformly loaded downward in the 
stiffness analysis. The bottom edges were also simply supported in the velocity 
analysis. As shown in Fig. 9(b), the prescribed square regions of the deformed 
shape were defined in the centres of both side surfaces, and the target shape was 
defined as one in which the initial positions were kept.  
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Figure 9: Problem definition for table problem. 

     Figure 10(a) shows the optimal shape obtained. Several beads were created on 
both side surfaces to increase the stiffness. Figure 10(b) shows the deformed 
shapes of the obtained shape. It was confirmed that the prescribed regions of the 
final shape kept their positions, although those of the initial shape largely 
deformed outward. 

 

Figure 10: Obtained shape and deformation of table problem. 

6 Conclusion 

This paper has presented a shell free-form optimization method for controlling a 
static deformed shape to a desired shape. A shape identification problem, in 
which the squared error norm of the deformed shape was defined as the objective 
functional, was formulated as a distributed-parameter shape optimization 
problem. The shape gradient function with respect to the shape variation in the 
normal direction to the shell surface was derived theoretically and applied to the 
H1 gradient method for shells. With this method, the objective functional 
converged almost to zero in all the design examples, and shell shapes with beads 
coinciding with the prescribed deformed shape were obtained. It was confirmed 
that the use of this method makes it possible to control the deformed shape to a 
desired shape and imparts a function to thin-walled structures, while creating .an 
optimal arbitrarily formed surface. 

(a) Obtained shape 

before loading 

after loading 

(b) Deformation of obtained shape 
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(b) Deformation of initial shape 
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