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Abstract

On a regular basis, engineering analysis requires stating and solving systems of
partial differential equations (PDEs). The most powerful and widely extended
techniques for solving PDEs are the so-called Weighted Residuals Methods. To
this group belong, among others, the Finite Element Method (FEM), the Boundary
Element Method (BEM), the Finite Volume Method (FVM) and the Mesh-Free
Method (MFM), as well as the many different formulations included in each of
these categories. The new Isogeometric Analysis (IGA) methods were proposed by
Hughes et al. in 2005, and it is our belief that they really deserve special attention.
The key idea of IGA is to use a previously generated CAD model for discretizing
both the geometry and the solution to the problem being analyzed. In return for
some minor drawbacks, IGA offers a number of major advantages that make the
technique specially attractive and promising in comparison with standard FEM,
BEM, FVM and MFM formulations.

In this presentation we will state a general formulation for the sensitivity
analysis of Weighted Residual Methods, both for linear and non-linear problems
with constant or varying geometry. The effects due to variation of geometry are
addressed by defining a generic procedure for integration in manifolds on the
basis of the metric tensor concept. The proposed approach leads to compact
and relatively simple expressions to obtain directional derivatives of arbitrarily
high order. The resulting scheme can be easily applied to IGA formulations,
its implementation being quite a straightforward task. Finally, one application
example is presented.
Keywords: IGA, isogeometric analysis, high order shape sensitivity analysis.
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1 Introduction

As a general rule, engineers are required to state and manipulate quite complicated
computational models in order to make proper decisions regarding the design and
the operation of structures, devices or systems of any kind.

We can think of the actual computational model being used for analyzing a
certain case as a black box (that will be called analysis module from here on) type

−→αααααααααααααα ANALYSIS MODULE −→ωωωωωωωωωωωωωω (1)

where αααααααααααααα represents the set of input data that are provided by the user, and
ωωωωωωωωωωωωωω represents the corresponding set of output results that are provided by the
computational model for each given case. We will say that a direct problem is
being solved when the value of the outputs ωωωωωωωωωωωωωω are to be obtained for given values
of the inputs αααααααααααααα. This is what the analysis module is originally made for, and this
might be all what was needed in certain real cases. But not always, indeed.

If we were dealing with a so-called calibration problem, our aim would be to set
up the values of some (or all) of the adjustable parameters αααααααααααααα for the results ωωωωωωωωωωωωωω to
reach a desired target value. On the other hand, if we were dealing with a so-called
parameter estimation problem (also called inverse problem, as opposed to the
concept of direct problem), our aim would be to find out the values of some (or all)
of the hidden parameters αααααααααααααα for the computed outputs ωωωωωωωωωωωωωω to fit some real measures
(taken from the real structure, device or system under consideration). Finally, if
we were dealing with a so-called optimum design problem, our aim would be to
choose the optimum values of some (or all) of the inputs αααααααααααααα for the results ωωωωωωωωωωωωωω to
minimize a suitable objective function with some additional constraints.

The solution to a problem in any of the above mentioned categories (calibration,
parameter estimation and optimum design) could be tackled by trial and error or
by means of some heuristics. If we proceed in this way, the analysis module will
be simply used (as a black box) for solving a sequence of direct problems. This is
what we call a zeroth-order approach. Zeroth-order approaches are conceptually
simple and easy to implement. But the price to pay for these advantages is a very
poor rate of convergence (kind of 1st-order). For this reason, an extremely large
(if not completely out of range) number of iterations is expected as a general rule.
This effect strongly limits the accuracy and the efficiency of zeroth-order methods
for solving many real problems, what precludes their use in a number of cases.
Other more sophisticated (but still zeroth-order) techniques of this type would be
the bisection method (in the case of one-dimensional calibration problems) and the
golden search method (in the case of one-dimensional optimum design problems.

The above discussion makes clear why higher order approaches (type Newton-
Raphson, with a better rate of convergence) are called for solving calibration,
parameter estimation and optimum design problems. But the price to pay for a
higher rate of convergence (2nd-order) is the need for computing the derivatives of
the outputs ωωωωωωωωωωωωωω with respect to the inputs αααααααααααααα, what is called the sensitivity analysis.
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2 Sensitivity analysis

For a given analysis module (1), our aim is to compute the derivatives

dωωωωωωωωωωωωωω

dαααααααααααααα
,
d2ωωωωωωωωωωωωωω

dαααααααααααααα2
, . . .

diωωωωωωωωωωωωωω

dααααααααααααααi
, . . .

dnωωωωωωωωωωωωωω

dααααααααααααααn
, (2)

up to a certain order n. In real engineering problems both the number of inputs
dim(αααααααααααααα) and the number of outputs dim(ωωωωωωωωωωωωωω) are expected do be quite large. On the
other hand, the number of derivatives (2) increases exponentially with the order
of derivation n. Thus, both the computational cost and the amount of memory
storage needed for performing a complete nth order sensitivity analysis must be
considered unaffordable in most real cases.

However, not all derivatives (2) will be needed as a general rule, since part of
the inputs αααααααααααααα are expected to be constant and part of the outputs ωωωωωωωωωωωωωω are expected
to be irrelevant for the particular case being considered. On the other hand, the
derivatives of a function and the function itself belong to a different class (both
from the mathematical and from the computer science point of view). Thus, the ith
order derivative of ωωωωωωωωωωωωωω with respect to αααααααααααααα in (2) is a multidimensional array with i+1
indices. This effect poses additional difficulties at the time of implementing the
sensitivity analysis in a computer code. We conclude that the sensitivity analysis
procedure will be more suitable for each particular case if it allows to select which
derivatives are to be computed. Moreover, the implementation of the procedure
will be definitely easier if the results ωωωωωωωωωωωωωω and the selected derivatives to be computed
are unidimensional arrays of the same size.

The answer for achieving both objectives lies with directional derivatives. For a
known value of the first order directional derivative of the inputs αααααααααααααα along a certain
vector ssssssssssssss, the first order directional derivative of the outputsωωωωωωωωωωωωωω along the same vector
is given by

Ds ωωωωωωωωωωωωωω =
[
∂ωωωωωωωωωωωωωω

∂αααααααααααααα

]
Ds αααααααααααααα. (3)

The concept can be extended for higher order derivatives. Thus, the nth order
directional derivative of the outputs ωωωωωωωωωωωωωω along vectors {ssssssssssssss1, ssssssssssssss2, . . . , ssssssssssssssn} is given by

Dn
s1,s2,...,sn

ωωωωωωωωωωωωωω = Dsn (. . . Ds2 (Ds1 ωωωωωωωωωωωωωω)) . (4)

Now it seems clear that the information provided by the high order sensitivity
analysis allows for computing approximations to the outputs ωωωωωωωωωωωωωω without the need
to repeat the analysis when the inputs αααααααααααααα are modified. Thus, if the inputs αααααααααααααα are
modified as

α̃(θ) = αααααααααααααα+
n∑

k=1

1
k!

(
Dk

sk αααααααααααααα
)
θk + O(θn+1), (5)

in terms of a parameter θ, then the corresponding outputs ωωωωωωωωωωωωωω take the values

ω̃(θ) = ωωωωωωωωωωωωωω +
n∑

k=1

1
k!

(
Dk

sk ωωωωωωωωωωωωωω
)
θk + O(θn+1). (6)
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This is what Lucien Schmidt [1] called “Structural Synthesis Concept” in his
pioneering works on structural optimization. And this is the essential point for
understanding why sensitivity analysis plays a key role for solving calibration,
parameter estimation and optimum design problems in engineering (as well as
control problems, that are basically time-dependent problems of any of the former
three categories).

Finally, it seems also clear that numerical differentiation should be avoided
for at least two reasons: the lack of accuracy and the high computational cost.
To illustrate this point, let’s suppose that the following procedure is used for
approximating the first order derivative of a scalar function of one variable f(x):

f ′(x) =
f(x+ h) − f(x)

h
+ O(h). (7)

It is obvious that the correct balance between round-off and truncation errors is
difficult to achieve in practice, since it depends on the value of the increment
h. On the other hand, for computing the single derivative f ′(x) by means of
approximation (5) the original function must be evaluated twice. These effects
are more noticeable indeed in the case of multiple variables.

3 Linear and non-linear analysis

For the sake of simplicity, we can think of the analysis module (1) as a computer
implementation of a numerical method that states and solves the so-called state
equation

ψψψψψψψψψψψψψψ (αααααααααααααα,ωωωωωωωωωωωωωω) = 00000000000000. (8)

However, the forthcoming concepts can be also quite easily extended to time-
dependent and eigenvalue problems.

If the state function ψψψψψψψψψψψψψψ(αααααααααααααα,ωωωωωωωωωωωωωω) is linear

ψψψψψψψψψψψψψψ(αααααααααααααα,ωωωωωωωωωωωωωω) = KKKKKKKKKKKKKK(αααααααααααααα) ωωωωωωωωωωωωωω − bbbbbbbbbbbbbb(αααααααααααααα) = 00000000000000, (9)

then the analysis module is prepared for solving linear systems type

KKKKKKKKKKKKKK(αααααααααααααα) ωωωωωωωωωωωωωω = bbbbbbbbbbbbbb(αααααααααααααα) (10)

by means of a direct solver (very likely a sparse matrix factorization solver type
Cholesky or Crout) or an iterative solver (type PCG o GMRES).

On the other hand, if the state functionψψψψψψψψψψψψψψ(αααααααααααααα,ωωωωωωωωωωωωωω) is non-linear the analysis module
is prepared for performing iterations until convergence type Newton-Raphson’s
method
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{
solve KKKKKKKKKKKKKK(αααααααααααααα,ωωωωωωωωωωωωωωκ) ∆ωωωωωωωωωωωωωωκ = bbbbbbbbbbbbbb(αααααααααααααα,ωωωωωωωωωωωωωωκ),

update ωωωωωωωωωωωωωωκ+1 = ωωωωωωωωωωωωωωκ + ∆ωωωωωωωωωωωωωωκ,
(11)

where 

KKKKKKKKKKKKKK(αααααααααααααα,ωωωωωωωωωωωωωω) =

[
∂ψψψψψψψψψψψψψψ

∂ωωωωωωωωωωωωωω

]
,

bbbbbbbbbbbbbb(αααααααααααααα,ωωωωωωωωωωωωωω) = −ψψψψψψψψψψψψψψ(αααααααααααααα,ωωωωωωωωωωωωωω).
(12)

Therefore, each non linear step (iteration) is roughly equivalent to a full linear
analysis.

4 Sensitivity analysis master techniques

Direct differentiation of the state equation (8) yields the linear system

[
∂ψψψψψψψψψψψψψψ

∂ωωωωωωωωωωωωωω

]
Ds ωωωωωωωωωωωωωω = −

(
∂ψψψψψψψψψψψψψψ

∂αααααααααααααα
Ds αααααααααααααα

)
. (13)

If the state function ψψψψψψψψψψψψψψ(αααααααααααααα,ωωωωωωωωωωωωωω) is linear as in (9) then

[
∂ψψψψψψψψψψψψψψ

∂ωωωωωωωωωωωωωω

]
= KKKKKKKKKKKKKK(αααααααααααααα),

∂ψψψψψψψψψψψψψψ

∂αααααααααααααα
Ds αααααααααααααα = Ds bbbbbbbbbbbbbb− (Ds KKKKKKKKKKKKKK) ωωωωωωωωωωωωωω. (14)

Hence, the sensitivity analysis consists in solving the linear system

KKKKKKKKKKKKKK(αααααααααααααα) Ds ωωωωωωωωωωωωωω = Ds bbbbbbbbbbbbbb− (Ds KKKKKKKKKKKKKK) ωωωωωωωωωωωωωω (15)

which coefficient matrix is the same as in (10). Therefore, if the analysis module
is based on a direct solver, the computing overload associated to the sensitivity
analysis is expected to be small in comparison with the analysis itself (about the
cost of calling for one additional load case).

On the other hand, if the state function ψψψψψψψψψψψψψψ(αααααααααααααα,ωωωωωωωωωωωωωω) is non-linear, we notice that
(13) is still a linear system with the same coefficients matrix that was used in the
last iteration of Newton-Raphson’s method (11). Therefore, if the analysis module
is based on a direct solver, the computing overload associated to the sensitivity
analysis is expected to be also small in comparison with the analysis itself (about
the cost of performing one more Newton-Raphson iteration in the analysis).

The first order sensitivity analysis procedure above explained is known as the
Direct Differentiation Method. Depending on other considerations (see [1, 2] for
more details), the operations involved can be conveniently rearranged. This leads
to the so-called Adjoint State Method [3, 4].

Finally, deriving a high order sensitivity analysis procedure by means of the
same principles above outlined is just a matter of algebra. Thus, if the state function
ψψψψψψψψψψψψψψ(αααααααααααααα,ωωωωωωωωωωωωωω) is linear as in (9) recursive differentiation of the state equation (8) yields
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linear systems type

KKKKKKKKKKKKKK(αααααααααααααα) Dn
sn ωωωωωωωωωωωωωω = Dn

sn bbbbbbbbbbbbbb− (Dn
sn KKKKKKKKKKKKKK) ωωωωωωωωωωωωωω −

n−1∑
i=1

(
n

i

) (
Di

si KKKKKKKKKKKKKK
)
Dn−i

sn−i ωωωωωωωωωωωωωω. (16)

A similar (but more cumbersome) expression can be derived for the non-linear
case. One again, we notice that the coefficient matrix is the same as in (10) and in
(15). Therefore, if the analysis module is based on a direct solver, the computing
overload associated to the high order sensitivity analysis is still expected to be
small in comparison with the analysis itself.

We conclude that in practice it will be realistic to ask for the first directional
derivative (or the full gradient, if necessary) of the outputs ωωωωωωωωωωωωωω. And it will also be
realistic to ask for their second (or higher) order directional derivative. But it will
not be realistic, as a general rule, to call for the full hessian (or higher order full set
of derivatives) of the outputs ωωωωωωωωωωωωωω due to the large number of items to be computed
and to the associated amount of memory storage that would be required.

5 Isogeometric analysis (IGA)

Very likely, the Analysis Module (1) will consist on a FEM, BEM, FVM, MFM or
IGA code. Hence, we are talking about a quite sophisticated intensive CPU time
consuming tool.

All these formulations belong to the group of the so-called Weighted Residuals
Methods. Describing and enumerating the similarities and the differences between
all of them is far beyond the scope of this paper. But, as far as we are concerned
in this section, the aim of the Weighted Residual Methods is to obtain an
approximate numerical solution for a given partial differential equation in a given
domain. For achieving this objective, the weighted residuals principle (and other
techniques, such as the Divergence Theorem) are used to convert the original
partial differential equation into a suitable variational weak form. Then, the
solution to the problem is discretized in order to convert the above mentioned
variational weak form into an algebraic system of linear or non-linear equations
type (8). Finally, the geometry of the domain is discretized in order to compute
the integral terms that are introduced by the weighted residuals principle. Quite
frequently both, the solution to the problem and the geometry of the domain,
are discretized by means of the same interpolation techniques (isoparametric
interpolation), what contributes some computational advantages.

FEM, BEM, FVM and MFM formulations are based on classic interpolation
techniques (type Lagrangian interpolation, least squares, etc.). On the contrary,
IGA formulations are based on the much more powerful and versatile CAD
interpolation techniques, namely B-Splines, NURBS and (more recently) T-
Splines. The IGA concept was first introduced in 2005 by Hughes et al. [5]. The
original aim of IGA was to avoid the need for producing the coarse and non smooth
FEM type discretizations that were needed for the analysis, while the much more
sophisticated and smooth discretizations that were generated by CAD systems
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had to be systematically discarded. The key idea is quite simple: just import the
discretization generated by the CAD system into the analysis module, and use it
for discretizing both, the geometry and the solution to the problem.

B-Splines, NURBS and T-Splines belong to the same family of interpolation
methods. Again, describing and enumerating the similarities and the differences
between all of them is far beyond the scope of this paper. Essentially NURBS
are B-Splines in homogeneous coordinates [6]. Although this slight difference
gratefully improves the power of the interpolation technique, the underlying
concepts are essentially identical. On the other hand, the aim of the T-
Splines formulation is to provide local h-refinement in bi-dimensional and
three-dimensional discretizations. The T-Spline formulation is more complicated
(and also more versatile and powerful) than the B-Spline formulations, but the
underlying concepts regarding IGA are basically the same. For these reasons we
will focus on B-Splines.

Let the definition domain of a certain problem be a curve embedded in the three-
dimensional material space. The IGA B-Spline one-dimensional interpolation for
this case can be written as



rrrrrrrrrrrrrrh(ξ) =
n∑

i=1

Ni,p(ξ) rrrrrrrrrrrrrri,

uh(ξ) =
n∑

i=1

Ni,p(ξ) ui,

ξ ∈ [0, 1]. (17)

For each value of the so-called reference coordinate ξ, the above expressions
give the interpolated position of each point rrrrrrrrrrrrrrh(ξ) within the domain and the
interpolated value of the solution uh(ξ) to the problem at that point. The so-called
control points {rrrrrrrrrrrrrri}i=1,...,n will be provided by the CAD system and define the
geometry of the domain (the curve itself) of the problem being solved. On the
other hand, the unknowns {ui}i=1,...,n must be computed by the analysis module
in order to approximate the solution to the problem.

The base of shape functions Ni,p(ξ) in the above expression are given by the
Cox-De Boor recursion formula [7]


Ni,q(ξ) =




1 if ξ ≤ ξi+1,

0 otherwise,




q = 0,

i = 1, . . . , n+ (p − q).

Ni,q(ξ) =
(

ξ − ξi
ξi+q − ξi

)
Ni,q−1(ξ)

+
(

ξi+q+1 − ξ

ξi+q+1 − ξi+1

)
Ni+1,q−1(ξ),




q = 1, . . . , p,

i = 1, . . . , n+ (p − q).

(18)

The above computations are normally implemented by means of the Piegl and
Tiller Algorithms [8], that are considered as the best numerically stable and fully
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optimized routines to perform the Cox-De Boor recursion. Functions Ni,p(ξ)
generated by this procedure are piecewise polynomials in terms of the variable
ξ. We also notice that for ξ1 ≤ ξ ≤ ξn+p+1, the following assertions hold [7]:




n∑
i=1

Ni,p(ξ) = 1 (partition of unity),

Ni,p(ξ) ≥ 0,

Ni,p(ξ) ∈ Cp−1 (if knots are not repeated),

Ni,p(ξ) �= 0 in (p + 1) knot spans at most.

(19)

The partition of unity assertion in (19) guarantees that the IGA approximation type
(17) for uh(ξ) is able to represent (exactly) a constant function (what happens
when ui takes the same value for all i). This is an essential requirement for an
interpolation technique to be acceptable in computational mechanics as a general
rule. On the other hand, the last assertion in (19) is quite surprising, but also
important and beneficial, since it guarantees that the bandwidth of the final system
type (8) will not be too large.

The degree and the continuity of the piecewise polynomials Ni,p(ξ) are
controlled by the so called knot vector [7]

Ξ = [ξ1, . . . , ξi, ξi+1, . . . , ξn+p+1] ,

with ξj ∈ IR ∀j, and ξi ≤ ξi+1 for 1 ≤ i ≤ n+ p.
(20)

where the ξj are called knots, [ξi, ξi+1] is a so-called knot span, n is the number
of basis functions and p is the polynomial order. We notice that knots must
form a non decreasing sequence, although multiplicity is allowed (and has some
important effects). As a general rule, the thus defined IGA approximation (17) is
not guaranteed to be “interpolatory” in the strict sense, since it is possible that
rrrrrrrrrrrrrrh(ξ) and uh(ξ) will not match the values of rrrrrrrrrrrrrri and ui (respectively) for any value
of the reference coordinate ξ. However, if a knot is repeated, the approximation
looses one order of continuity for each repetition of the knot at the corresponding
value of ξ . Therefore, the approximation becomes discontinuous if the knot is
repeated exactly p+ 1 times. Furthermore, it becomes interpolatory if the knot is
repeated exactly p times. In many practical applications the knot vector is said to
be open and uniform. This means that ξ1 = ξ2 = . . . = ξp+1 = 0, ξn+1 = ξn+2 =
. . . = ξn+p+1 = 1 and knots {ξp+1, . . . , ξn+1} are uniformly distributed in the
interval [0, 1]. The thus defined IGA approximation is interpolatory only at the first
and at the last control point [7].

Another important issue in favor of IGA is the fact that the so-called Oslo Knot
Insertion procedure [7] allows for creating new knots while the domain geometry
remains unchanged. Therefore, the functional interpolation can be improved as
much as desired without affecting the geometry of the problem. This makes h-
refinement a trivial automatic task that can be done on the fly by the analysis code,
without the need for a mesh refinement preprocessor. However, knot insertion
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in bi-dimensional and three-dimensional problems makes h-refinement non-local
(and this is one of the reasons why there is so much interest and research on T-
Splines at present)

Finally, bi-dimensional and three-dimensional B-Spline interpolations can be
easily generated by means of a tensor product of several one-dimensional B-Spline
interpolations type (17), thus giving [7]


rrrrrrrrrrrrrrh(ξ, η, χ) =
n∑

i=1

m∑
j=1

�∑
k=1

N ξ
i,pξ

(ξ) Nη
j,pη

(η) Nχ
k,pχ

(χ) rrrrrrrrrrrrrri,j,k,

uh(ξ, η, χ) =
n∑

i=1

m∑
j=1

�∑
k=1

N ξ
i,pξ

(ξ) Nη
j,pη

(η) Nχ
k,pχ

(χ) ui,j,k

(ξ, η, χ) ∈ [0, 1]3.

(21)
IGA can be quite easily implemented within an existing FEM code. The rules

to do so are quite simple:
1. ELEMENTS are substituted by KNOT SPANS.
2. NODES are substituted by CONTROL POINTS.
3. SHAPE FUNCTIONS are substituted by the PIEGL AND TILLER

ALGORITHMS.
4. The rest remain unchanged (same weak form, same general organization of

the code, same integration formulas, etc.).
It is true that IGA has some drawbacks in comparison with FEM, BEM, FVM,

MFM formulations since unknowns no longer represent nodal values, essential
boundary conditions may become non-trivial and geometric modelling is much
less intuitive. But IGA also offers a number of major advantages, namely: CAD
models are expected to be analyzed without the need for mesh generation (although
this has not been fully accomplished because CAD systems are designed to model
surfaces mainly, instead of solids); mesh refinement becomes (almost) trivial, and
geometry is not modified in the process; continuity can be arbitrarily raised without
heavy tolls to pay for in return; the capacity of the formulation for approximating
complex behaviors is dramatically increased; and higher order problems can be
addressed (such as Phase-Field models type Cahn-Hilliard and Navier-Stokes-
Korteweg equations, and many others).

6 Sensitivity analysis specifics for IGA

In Weighted Residuals based formulations (such as IGA) state equation (8) takes
the general form

ψψψψψψψψψψψψψψ(αααααααααααααα,ωωωωωωωωωωωωωω) =
∫
rrrrrrrrrrrrrr∈Ω(αααααααααααααα)

PPPPPPPPPPPPPP(rrrrrrrrrrrrrr,αααααααααααααα,ωωωωωωωωωωωωωω) dΩ, (22)

where αααααααααααααα are the input data to the IGA analysis module (geometry, physical
properties, loads, etc.), ωωωωωωωωωωωωωω are the so called state variables or output results
(deformation–stress, velocity-pressure, etc.), Ω is the definition domain of the
problem embedded in the material space (normally IR3) and rrrrrrrrrrrrrr are the coordinates
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of an arbitrary point in Ω. For the sake of simplicity, we assume that geometry
(and hence, domain Ω) does not depend on ωωωωωωωωωωωωωω. Otherwise, the suitable corrections
should be included.

Therefore, the sensitivity analysis of this kind of formulations requires taking
derivatives of functions that are defined by integration in arbitrary domains. If
the geometry of the problem being solved is constant, so will be the integration
domains. In these conditions it is fairly straightforward to state the sensitivity
analysis by means of fully analytical techniques. On the contrary, if the geometry
of the problem being solved is not constant (i.e. in shape optimization or shape
parameter estimation problems, non-confined flow problems, etc.) stating the
sensitivity analysis is not immediate. For this reason, the sensitivity analysis for
varying-geometry problems has been mainly addressed by means of low order
finite difference approximations, that are known to be inaccurate and difficult
to calibrate. In an attempt to overcome this drawbacks, a number of analytical
approaches have been proposed to address the sensitivity of 1) the numerical
implementation, 2) the analytical model in weak form, and 3) the discretized
formulation corresponding to the numerical method being used [1, 3]. The latter
approach is in perfect agreement with the analysis model being used, and gives
rise to a most compact and flexible formulation than the other options. For those
reasons, this will be the approach that we will follow in this paper.

As shown in (13) we need to compute sensitivity terms type[
∂ψψψψψψψψψψψψψψ

∂ωωωωωωωωωωωωωω

]
=

∂

∂ωωωωωωωωωωωωωω

∫
rrrrrrrrrrrrrr∈Ω(αααααααααααααα)

PPPPPPPPPPPPPP(rrrrrrrrrrrrrr,αααααααααααααα,ωωωωωωωωωωωωωω) dΩ (23)

and

Dα
s ψψψψψψψψψψψψψψ = Dα

s

∫
rrrrrrrrrrrrrr∈Ω(αααααααααααααα)

PPPPPPPPPPPPPP(rrrrrrrrrrrrrr,αααααααααααααα,ωωωωωωωωωωωωωω) dΩ, being Dα
s � =

∂�
∂αααααααααααααα

Dsαααααααααααααα. (24)

Terms type (23) can be considered immediate, since integration domain Ω(αααααααααααααα)
does not vary with ωωωωωωωωωωωωωω. Thus,[

∂ψψψψψψψψψψψψψψ

∂ωωωωωωωωωωωωωω

]
=
∫
rrrrrrrrrrrrrr∈Ω(αααααααααααααα)

∂

∂ωωωωωωωωωωωωωω
PPPPPPPPPPPPPP(rrrrrrrrrrrrrr,αααααααααααααα,ωωωωωωωωωωωωωω) dΩ (25)

On the other hand, terms type (24) can not be considered immediate, since
integration domain Ω(αααααααααααααα) does vary with ωωωωωωωωωωωωωω. This is the reason why a traditional
distinction is made between sizing optimization (when Ω(αααααααααααααα) is constant) and shape
optimization (when Ω(αααααααααααααα) is variable). However, it can be proved [3] that

Dα
s ψψψψψψψψψψψψψψ =

∫
rrrrrrrrrrrrrr∈Ω(αααααααααααααα)

Ds PPPPPPPPPPPPPP(rrrrrrrrrrrrrr,αααααααααααααα,ωωωωωωωωωωωωωω) dΩ (26)

where,

Ds � = Dα
s � + � 1

2
Tr
[
GGGGGGGGGGGGGG−1 Ds GGGGGGGGGGGGGG

]
, (27)

beingGGGGGGGGGGGGGG the so-called metric tensor of the IGA mapping type (21). The details on
how to compute and manipulate the metric tensor can be found in [3].
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We notice that expressions (25) and (26) are analogous to the previous
expression (22). Therefore, the same integration techniques can be used for the
three of them. Furthermore, the corresponding high order sensitivity terms can be
generated by recurrence.

7 Application example

In this section we will present some results obtained for a concrete roof spanning
over a square room and built-in at its four vertices. Because of symmetry,
only one quarter of the structure is analyzed. The complete specifications of
the structure are given in [3]. In particular, the height of the mid-surface at
the keystone is 1:839920 m. The analysis is performed by means of a linear
elastic three-dimensional isogeometric model with uniform open knot vectors, B-
Spline interpolating functions (p = 2) null displacements at the built-in supports,
symmetry conditions where applicable, and integration by means of 3-point Gauss
quadratures.

The geometry of the roof is defined by a total of 27 control points (see left
side of Fig. 1). An h-refined mesh is automatically generated for the analysis by
knot insertion, giving a total of 32 × 32 × 4 = 4, 096 control points (nodes) and
30 × 30 × 2 = 1, 800 knot spans (elements). We notice that this IGA model
reproduces the exact geometry of the roof (as defined in [3]) for all and any level
of h-refinement being applied.

Fig. 1 (right side) shows how the 1st principal stress in the vicinity of control
point # 1 changes when the design in modified. In this figure we compare the
IGA computed results with the IGA 3rd order predicted values. The former were
obtained by recalculating the structure each time. The latter were obtained by
approximating the structural response in terms of a Taylor expansion, taking into
account the information given by a 3rd order directional sensitivity analysis of the
unmodified design.
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Figure 1: Left: IGA model. Right: 1st principal stress [Pa] at a given point for
different heights [m] of the mid-surface at the keystone; 3rd order
predicted (line) vs. computed results (squares).
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8 Conclusions

A unified approach for the high order sensitivity analysis of IGA formulations has
been presented. The technique is based on the IGA mapping that links material
and reference coordinates. High order directional sensitivity derivatives are given
by a single, unified and compact expression. The 1st order sensitivity analysis
is cheap in terms of computing time, and may contribute essential information
for decision-making. The 2nd order sensitivity analysis is relatively cheap in
terms of computing time, and may contribute important information for improving
algorithms. Higher order information is more expensive in terms of computing
time, although it contributes to improve the quality of the approximations being
used. The scope of future versions of IGA-based codes will be gratefully expanded
if support for high order directional sensitivity analysis is provided as a standard
feature.
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