Computer Aided Optimum Design in Engineering XII 35

Metamodel-based multi-objective robust design
optimization of structures

J. Martinez-Frutos & P. Marti-Montrull
Structural Optimization Group, Technical University of Cartagena, Spain

Abstract

Multi-objective robust optimization (MORO) is a highly demanding computational
task because of the direct nesting of the uncertainty quantification within
optimization. This work presents an approach based on Kriging models to
efficiently include the uncertainty quantification in the optimization procedures.
In the proposed approach the metamodels appear both at optimization level as
well as at uncertainty quantification level. The proposed methodology allows us
to: (1) assess the robustness of each design using a reduced number of simulator
runs, as compared with conventional approach procedures; and (2) to decouple the
uncertainty quantification of the optimization, allowing us to solve the problem
with a lower computational cost compared to the nested approach. A benchmark
problem has been considered using different approaches in order to compare their
relative merits. The results show that the proposed method has potential to obtain
solutions with reasonable accuracy and a considerably lower number of function
calls than required by conventional methods.

Keywords: efficient multi-objective robust optimization, evolutionary algorithms,
Kriging models.

1 Introduction

In structural engineering, the designer often has to deal with problems that involve
conflicting objectives and sources of uncertainty in diverse structural parameters,
such as geometric imperfections, material properties or applied loads. The set
of optimal solutions obtained using conventional deterministic methods can be
very sensitive to perturbations in design variables, leading to a deterioration of the
optimal structural performance or even to a set of infeasible designs. Hence, it is
desirable to obtain a set of optimal solutions which are less sensitive to variations
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in the structural parameters. The Multi-Objective Robust Optimization (MORO)
takes into account the robustness of each design in the optimization process,
leading to a set of robust solutions known as Pareto robust solutions [1].

Among the different approaches that address the MORO problem, authors such
as Deb and Gupta [2] incorporate the robustness of the objective function within
the optimization problem without considering the uncertainty in the constraints.
Conversely, Gunawan and Azarm [1] and Li et al. [3] take into account both the
robustness of the objective functions as well as the robustness of the constraints.
Gunawan and Azarm [1] and Li ef al. [3] propose a double loop optimization
approach with interval uncertainty. These approaches can be computationally
intractable, especially in high-dimensional problems [4], since two optimization
problems need to be resolved for each design. In order to reduce the computational
cost, some authors such as Hu et al. [4] and Shimoyama et al. [5] suggest the use of
approximations to assist the multi-objective optimization problem. In this respect,
Hu et al. [4] propose a two-level optimization with uncertainty intervals assisted by
Kriging models. In the work proposed by Shimoyama et al. [5], Kriging models are
used to obtain mean and standard deviation of the objective functions efficiently.
The methodology proposed by Shimoyama et al. [5] doubles the number of
objective functions compared to the deterministic approach. Said methodology
can be inefficient in high-dimensional problems. The former approaches provide
a set of robust solutions, but do not identify what the degree of robustness against
other design is [6]. Recently, Erfani and Utyuzhnikov [6] presented a methodology
suitable for obtaining solutions with different levels of robustness by introducing
an additional objective function.

This work presents an approach based on Kriging models to efficiently include
the uncertainty quantification in the optimization procedures. The proposed
methodology allows: (1) to appraise the robustness of each design using a reduced
number of simulator runs compared with conventional approach procedures; (2) to
solve the MORO problem in a single-loop optimization assisted by Kriging
models; and (3) to obtain multiple solutions to the MORO problem with different
levels of robustness of both the objective functions and the constraints, without
additional simulator calls.

2 Metamodel-based multi-objective robust optimization
2.1 Multi-objective robust optimization

The conventional multi-objective optimization problem can be formulated as
follows:

min {f1(%p),- ... fm(x,p)}
st gi(x,p)<0j=1,---,my (1)
st hp(x,p)=0k=1,--- ,my

Xlower <x< xupper

WIT Transactions on The Built Environment, Vol 125, © 2012 WIT Press
www.witpress.com, ISSN 1743-3509 (on-line)



Computer Aided Optimum Design in Engineering XII 37

where x € R" is the vector of design variables to be optimized; p € RY is the
vector of non-design parameters; x'°V°" and x"PP°" are the lower and the upper
bounds of the design variables respectively; g; and hy, are the problem inequality
and equality constraints. The solution of the multi-objective problem defined in (1),
leads to a set of optimal solutions in the Pareto sense: A vector x is called a Pareto
solution to problem (1) if another design vector x* does not exist in the feasible
space such that, f;(x*,p) < fi(x,p) forany i =1,--- ,m,and j € {1,--- ,m}:
fi(x*,p) < fj(x, p) exists.

The conventional multi-objective optimization problem considers all the
variables and parameters involved in the problem as being deterministic. For that
reason, the optimal performance of the structure can be dramatically degraded in
the presence of sources of uncertainty. The Multi-Objective Robust Optimization
(MORO) takes into account the robustness of each design in the optimization
process, leading to a set of robust solutions known as Pareto robust solutions [1].

Among the different approaches that address the MORO problem, in this paper
the formulation proposed by Mattson and Messac [7] is considered. The mean
values of the design metrics plus the standard deviations are minimized as follows:

i A e o) T RO R Gep.g)r - P epg) T RO p) )

8.t fg;(x,p.) T F0g;(x,pe) S0 J=1,---,my 2

Xlower <x< xupper

where £ is a random variable vector that represents the uncertainty of the problem
(design variables and/or parameters); 11, and oy, are the mean and the standard
deviation of the objective function f;; and u,, and o, are the mean and the
standard deviation of the inequality constraints respectively. All the equality
constraints are transformed into inequality constraints to obtain multiple solutions
to the MORO problem with different levels of robustness of both the objective
functions and constraints.

In order to solve the problem formulated in 2, it is necessary to combine
optimization techniques with uncertainty quantification techniques. The most
straightforward approach is to perform an uncertainty quantification loop for each
iteration of the optimization algorithm. However, this can lead to an intractable
problem. For this reason, diverse approaches exist in the literature that aim to break
the nested relationship between uncertainty quantification and optimization [8].
In this work we investigate the used of Kriging models to efficiently include the
uncertainty quantification in the MORO procedures.

2.2 Kriging models

A metamodel replaces a computationally expensive simulation model called
a simulator by an emulator which is much faster to evaluate. Among the
different metamodeling techniques, the Kriging models [9] have gained increasing
popularity in recent years for use in engineering design, owing to the flexibility
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in capturing nonlinear behaviours [10], and the ability to provide statistical
information on the predicted output [11].

Kriging models assume that the simulator can be approximated by a sample path
of a Gaussian stochastic process ¢ (x) whose prior mean E[4(x)] = f(x)™ 3 and
prior covariance function Cov[¥(x),%(x')] = o®R(x,x/, ¢) are unknown. In
the former expressions; 3 = [31,...,3p]T is a vector of unknown parameters;
fx) = [A(x),...,£(x)]T is a set of known functions of x € R™; a? is
the variance of ¥(x); and R(x,x’, @) is the autocorrelation function between
x and x’. The stochastic process ¥(x) represents the prior knowledge of the
simulator, for that reason the choice of the autocorrelation model should be made
consistently with the known properties of the simulator. The most widely used
class of autocorrelation function is the anisotropic generalized exponential model:

n

R(x, %', 6) =exp<Z—'X;—_x/'s>, 1<s<o o)
i=1 !

The parameters 3, o and ¢ are unknown a priori and are determined from
the set of simulator responses % = {yi,...,¥Ym} which are evaluated onto
an experimental design 2" = {xi,...,Xn,}. Using Bayesian techniques, the
posterior distribution of ¢ (x) conditional on the vector of observations % =

{y1,.-.,Ym is also Gaussian [12] with mean value:
§(x) = E[¥9(x)|%] = f(x)"8+r(x)"TR"Y(ZT — FB) (4)
and variance:

Cov[9(x),9(x)|] = *{R(x,X,¢) — r(x) TR 'r(x) +

+u(x)"(F'R™'F) u(x)} )
where we have introduced:
u(x) = f(x ) F'R™'r(x) (6)
B = (FTR'F)"'FTR % @)
o = %( —~FB)"R (¥ —Fp) ®)
E]:E(Xl)7 Z:177m7]:177p (9)
Ry =R(xi,x5,¢), i=1,....m,j=1,...,m (10)
Tl.]( ) (X17XJ7¢))7 i:17"'7m7j:17"'7m (11)

§(x) represents the best prediction of the simulation model for a point x, and
Cov[¥(x),¥9(x)|?] is the predicted error variance which provides probabilistic
confidence intervals in addition to the prediction.

In (4) and (5) ,@ and o? are derived analytically and only depend on the
autocovariance parameters ¢. In the present work, the correlation parameters are
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determined using maximum likelihood estimation (MLE) [12], solving the global
optimization problem:

max(_mln(az);r 1M(RI)) (12)

In this work, a set of different instances of Kriging are created using different
correlation and regression functions. The best model of the set is selected using
the mean square errors, in particular the root mean square error (RMSFE) and
the R?. Both the RM SE and the R? are estimated using a global cross-validation
errors measure called prediction sum of squares (P RES'S) [13] without additional
simulator calls:

PRESSrMsE =

y; is the prediction at the design point ¢, ¢ is the mean of the predicted values and
y—; is calculated by removing each point ¢ from the modeling points, constructing
a new Kriging model at the remaining points and obtaining the prediction at the
removed point.

2.3 Proposed approach

This work presents an approach based on Kriging models that approximate the
statistical moments on the design domain and efficiently include the uncertainty
quantification in the optimization loop. The scheme of the proposed approach is
depicted in figure 1.

The proposed method consists in a two-stage framework. The first stage aims at
constructing a set of Kriging models that approximate the statistical moments of
both the objective functions and the constraints on the design domain (pt(x), o (x),
~(x), B(x)). The second stage consists in the resolution of the multi-objective
problem using deterministic algorithms. In this work an evolutionary algorithm
(NSGA-II) was used to fulfilled this target. The two-stage framework is further
detailed below:

Stage 1: setting up Kriging models
1. Create a design of experiment (DoE) in the design variable domain X =
{X1," "+ X4, ,Xm, }. Latin Hypercube Sampling (LHS) was used for
this.
(a) For each design point x; a new design of experiments is generated in
the random variables domain {&1,--- ,&;,- -, Eme }-
(b) Each point {x;, £, } is evaluated with the simulator.
(c) A Kriging model is constructed using the responses from the above
step. This step involves solving the MLE problem (12) and selecting
the best model by PRESSgrs.
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(d) The accuracy of the Kriging model (Metamodel level 2, figure 1) is
assessed based on the predicted R2. If the accuracy is not enough,
new infill samples (&;n511) are selected in regions with higher predicted
error variance. If sufficient accuracy has been achieved then proceed
to the following step.

(e) Statistical moments (Y = p(x;),o(x;),v(x;), 3(x;)) are obtained
using Monte Carlo simulation assisted by Metamodel level 2, figure 1.

2. Using X e Y, a Kriging model (Metamodel level 1 , figure 1) is fitted for
each statistical moment (f1(x), & (x), §(x), B(x)).

3. The accuracy of the Kriging model (Metamodel level 1, figure 1) is assessed
based on the predicted R2. If sufficient accuracy has not been achieved,
new infill samples (x;na11) are selected in regions with higher predicted error
variance. If sufficient accuracy has been achieved then proceed to stage 2.
Stage 2: Multi-objective optimization

(a) the MORO problem (2) is solved using the evolutionary algorithm
(NSGA-II) assisted by the Kriging models obtained in stage 1.

3 Numerical application

In this section the proposed methodology is applied to solve the problem of multi-
objective robust design of a two-bar truss structure [14]. Different approaches
(figure 2) for surrogate-based optimization under uncertainty [8] are used in order
to compare their relative merits:

1. Nested approach (N) : the multi-objective optimization is performed
on the results of the uncertainty quantification. The statistical moments
are obtained using Monte Carlo simulations directly on the simulator.
Metamodels are not used at any level. The results obtained by this approach
are considered as a reference.

2. Nested/Layered (N-L) : the multi-objective optimization is performed on
the results of the uncertainty quantification. The statistical moments are
obtained using Monte Carlo simulations on a Metamodel. The metamodel
approximates the simulator performance f(x,&) in the random variables
domain (Metamodel level 2).

3. Layered/Nested/Layered (L-N-L) (this work) : the multi-objective optimiza-
tion is performed on a Metamodel (Metamodel level 1 ). The statistical
moments are obtained using Monte Carlo simulations on a Metamodel. The
metamodel approximates the simulator performance f(x, ) in the random
variables domain (Metamodel level 2).

Independently of the approach, the multi-objective optimization was carried
out using the following parameters of the NSGA-II algorithm: binary tournament
selection, number of generations (100), population size (50), crossover probability
(0.9), mutation probability (0.1). The Monte Carlo simulations were carried out
using 10,000 points.
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Generation of DoE in design space
X ={x1,""",Xm, }

— > | Generation of DoE in stochastic space
E={&, " &me}

Evaluate objective functions and constraints
£(45, &), (x5, &) i=1,--,ma, j=1,--+,me¢

Identify the best Kg model
(Best PRESSRrMs)

Update DoE in stochastic space

Metamodel level 1

___ _ Metamodellevel2 ______ ___

Accurate models?
(Predicted R?

Uncertainty quantification assited by Metamodel level 2|
B (%)), 0 (%5), 7 (%) B(x;) j =1, my

Fit Kg models of statistical moments
(maximize likelihood)

¥

Identify the best Kg model
(Best PRESSRrMs)

Update DoE in design space

Accurate models?
(Predicted R?

Optimization usign MOEA
(NSGA-II)

|Va1idati0n of Robust optimal solutions |

Figure 1: Flowchart of the metamodel-based MORO process.

3.1 Benchmark problem: two-bar truss structure

The popular two-bar truss structure problem (figure 3) is used as a benchmark
test in this work for the multi-objective robust optimization. The test case is
adapted from [14]. The design variables are the cross section diameter (d) and
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the structure height (/). The random parameters of the problem are: the vertical
force (P ~ A4°(150,5) kN) , the structure width (B ~ 4(750,10) mm),
the Elastic modulus (E ~ #(2.1e5, 5e3) N/mm?), and the member thickness
(t ~ A(2.5,0.4) mm). The optimization problem is to minimize the volume and
the vertical displacement of the structure subject to constraints of stress, buckling
as well as the bound constraints (14).

lglgl {/ff'uolume + k Ovolume; Hdeflection + k Udeflection}

s.t. g1 = us +k gs < Smam (14)
g2 = ps + kog < Scrit
20 <d < 80, 200 < H < 1,000

where:
Smaz = 400 MPa, Seriy = 7;7;(;14;[ d;'))’ _ PW
volume = 27rdt\/m, deflection = %
[ons (Fx,9)
(Fx.)"
) . ’m Bt %)

Nsc/\ 11 UQ
E(f(x,)")
f(x.€)
Memmndel Vleumodel
chcl 2

Levelz
£(x.9) ¢ l )

[

(a) () (©)

Figure 2: Multiobjective robust optimization approaches. (a) Nested approach,
(b) nested/layered, (c) layered/nested/nayered.

Section A-A

Figure 3: Two-bar truss structure.
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3.2 Results and discussion

Twelve Kriging models were constructed. The regression and correlation models
are depicted in table 1. Two LHS of 30 points and 20 points were used to fit the
metamodels at levels 1 and 2 respectively. The predicted R? is shown in table
1 along with the R? estimated from Monte Carlo integration at 10,000 points.
For this case, the Kriging models have been shown to be highly accurate, with
R? values above than 0.98. Assisted by the former Kriging models, the MORO
problem is solved as a deterministic one using the NSGA-II algorithm. The robust
Pareto fronts obtained from different approaches and values of £k = 1,2 and 3
are depicted in figure 4. The Pareto fronts show a good agreement between all the

Table 1: Kriging models.

reg. COTT. Pred. R? R
order func.
fi/ug /og | 0/3/3 gleleg 1/0.999/0.999 1/0.999/0.999

fo/ug/og, | 2132 g/s/s | 0.999/0.969/0.986 | 0.999/0.998/0.993
91/ tg. /0g, | 31313 g/glg | 0.992/0.989/0.994 | 0.994/0.994/0.993
92/ tgy/0g, | 31313 g/glg | 0.995/0.986/0.999 | 0.999/0.999/0.991

R? evaluated by Monte Carlo integration at 10,000 points

correlation: g (gauss), e (exponential), ge (general exponential), s (spline)

25 T
© nested
L+o o nested/layered

A layered/nested/layered

80

ab n+20
°

Deflection

0.5~

Volume x10°

Figure 4: Robust Pareto fronts.
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different approaches. As the volume increases the robust Pareto fronts are closer
to the deterministic one, hence the designs are less sensitive to variations in the
random parameters. The computational costs of each approach in terms of the
number of simulator calls are discussed below:

Ny = NyopNgen Nare Ni, = 50 x 100 x 10,000 x 3 = 1.5¢8  (15)
Nyjt = NpopNgen Npo By, = 50 x 100 x 20 x 3 = 3.0e5 (16)
Nl/n/l = NDOEMlNDOEMz =30 x 20 = 600 (17)

where N, is the population size; N, is the number of generations; V¢ is the
Monte Carlo size; Ny, is the number of parameter &k values; Npog,,, is the DoE
size used in metamodel level 1; and Npog,,, is the DoE size used in metamodel
level 2. The proposed approach allows one to reduce the number of simulator calls
by six and three orders of magnitude respectively in comparison to the nested and
the nested/layered approaches. It is also worth noting that the proposed approach
does not require further simulator runs to obtain Pareto fronts with different levels
of robustness.

4 Conclusion and future prospects

An approach based on Kriging models to efficiently include the uncertainty
quantification in the optimization procedures has been proposed. The proposed
methodology allows one: (1) to appraise the robustness of each design using a
reduced number of simulator runs compared with conventional methods; (2) to
solve the MORO problem in a single-loop optimization assisted by Kriging
models; and (3) to obtain multiple solutions to the MORO problem with different
levels of robustness of both the objective functions and the constraints, without
additional simulator calls.

The results show that the proposed method has the potential to obtain solutions
with reasonable accuracy and a considerably lower number of function calls than
conventional methods. For the studied case, Kriging models have been shown to be
suitable for surrogating the simulator, allowing to estimate the statistical moments
efficiently compared with conventional methods. It is also worth noting that the
metamodels created during the optimization can be employed in new optimization
processes or computationally demanding applications.

The proposed approach is well suited for the multi-objective robust optimization
of problems that involve computationally demanding objective functions and/or
implicit constraints (FEA). In future works this approach will be applied to
higher dimensionality structural problems and different formulations of the MORO
problem.
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