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Abstract 

In the conventional methods of structural optimization, the designers reduce the 
structural cost or weight without taking into account uncertainties in the 
materials, geometry and loading. In this way, the optimum solution may 
represent a lower level of reliability and thus a higher risk of failure. However, 
the objective of reliability based design optimization (RBDO) is to design 
structures that are economic and reliable. In this paper, external loads and 
member resistance are assumed to be independent random variables. To identify 
critical failure modes, the  -unzipping method is used and the probability of 

failure of each mode is calculated using the method of reliability analysis of 
parallel systems. By combination of the different failure modes as a series 
system, the probability of failure of the total structural system is estimated. The 
effects of the semi-rigid behavior of the beam-column connections are also 
considered in the RBDO problem. The RBDO problem is formulated by the 
expected costs or structural weight as the objective function and the reliability of 
the system as constraints. This constrained nonlinear optimization problem is 
changed in to an unconstrained optimization problem using the method of 
interior penalty function. Then, this new problem is solved by an unconstrained 
optimization technique. Some numerical examples are presented to demonstrate 
the applicability of the proposed methodology. These examples illustrate the 
importance of the effect of the semi-rigid behavior of the connections in the 
calculation of the minimum weight of the steel frames. 
Keywords: reliability, structural optimization, steel frames, semi-rigid 
connections, probability of failure. 
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1 Introduction 

The optimization of structures with respect to weight or cost is a well-known 
problem and it is the subject of many books, such as Kirsch [1] and Haftka and 
Gurdal [2]. However, the optimization of structures under reliability constraints 
is a complicated problem and it has been the subject of a few studies, such as 
Nakib and Frangopol [3]. The purpose of the reliability based design 
optimization (RBDO) is to produce reliable, and at the same token economical, 
structures. In the present study, by using a typical moment-rotation diagram, 
such as that described by Kishi et al. [4] and Hadianfard and Razani [5], the 
more realistic semi-rigid behavior of beam-column connections is considered in 
the structural analysis and in the RBDO. External loading, the resistance 
capacities of members and connection properties are assumed to be independent 
basic random variables, with normal distribution. The β-unzipping method, as 
described by Thoft-Christensen and Murotsu [6], is used to identify critical 
failure modes in the structural system. For each critical mode the probability of 
failure is calculated by using the method of reliability analysis of parallel 
systems. Then, by combination of the different failure modes as a series system 
and by using bounding techniques, the probability of failure of the overall 
structural system is estimated. In the optimization problem, the objective 
function is the weight of the structure, including the weight of the members and 
the weight of the connections, while the constraints are both deterministic and 
probabilistic.  

2 Structural analysis of semi-rigid steel frames 

The conventional analysis and design of steel frames are usually carried out 
under the assumption that the beam-column connections are either fully rigid or 
ideally pinned. However, the actual behavior of the beam-column connections in 
the steel frames is semi-rigid. The relationship between the beam end moment 
(M) and the relative change in angle ( r ) can be described by means of a typical 

moment-rotation curve. Some popular 
rM   relations, such as linear, 

polynomial, exponential, and power models, are explained by Chen and Lui [7]. 
     In the present research, the power model of Kishi et al. [4] and Chen and Lui 
[7] is used for describing the

rM    the relation of the connection with angles. 

The 
rM   relation in this model is shown in eqn (1). 
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     In which 
kiR is the initial connection stiffness, uM is the ultimate moment 

capacity of the connection, and n is a shape parameter of the 
rM   curve. The 

two parameters, kiR  and uM are evaluated analytically based on the size and 

geometry of the connection, while the shape parameter n is obtained by curve-
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fitting technique. The effects of the connection flexibility are modeled by 

attaching rotational springs with stiffness modulus iR  and jR  at the ends i and j 

of a beam. For the sake of simplicity and for reducing the time of analysis, it is 
assumed that the rotational spring are linear with the stiffness modulus equal 
to kiR5.0 The stiffness matrix of a beam with rotational springs at the ends is 

function of the iR  
and 

jR  as given by Hadianfard and Razani [5]. For columns, 

the stiffness matrix takes the usual form. The beams and the columns stiffness 
matrices can be assembled in the usual manner to form the stiffness matrix of the 
structure.

 

3 Identification of critical failure modes 

The reliability of a structure is denoted by the factor   which is defined by:  

fP 1                                                      (2) 

Where, 
fP is the probability that the structure will fail during the specified 

reference period. For a fundamental case (a structure with only two independent 
random variables R and S, where R is resistance variable and S is load effect 
variable) the reliability index  is defined by eqn (3). 

M

M


                                                           (3) 

where M=R-S is called the safety margin and M , M  are the mean value and 

standard deviation of M. The probability of failure (
fP ) for this fundamental 

case can be calculated from eqn (4). 
)()( 1

ff PP                                              (4) 

where  is standard normal distribution function. 
     The -unzipping method is one of the methods by which the reliability of the 
structures with ductile or brittle elements can be estimated at a number of 
different levels. The systems reliability at mechanism level is defined as the 
reliability of a series system with the significant mechanisms as elements. For 
generating the Fundamental mechanisms, the structure must be modeled by n 
failure elements. At first it is assumed that, the failure is accrued in critical 
failure element l with the lowest reliability index, and structure is modified by 
removing the corresponding failure elements and adding a pair of so-called 
fictitious loads (

lF ) (normal forces or moments for ductile elements). The 

modified structure is then reanalyzed and new reliability indices are calculated 
for the others failure elements. If the  for failure element m was the lowest -
values. Then the failure is assumed in the elements l and m and the structure is 
modified and reanalyzed. In this way new -values are calculated for all failure 
elements except l and m and the smallest -value is calculated (for example in 
failure element r). In this way, 3 failure elements l, m and r are selected as part of 
failure tree. The same way can be used for selecting other failure elements of the 
failure tree. Formation of a mechanism can be unveiled by the fact that the 
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corresponding stiffness matrix is singular. By this procedure a number of 
mechanisms with different numbers of failure elements will be identified. In this 
way, several re-analyses of the structure are necessary. 

4 Estimation of the probability of failure 

The reliability of a structural system can be estimated on the basis of a modeling 
by a series system where the elements in the series system are parallel systems 
(failure modes). Probability of failure for each parallel system (

fpP ) can be 

calculated by Ditlevsen's bounds. In this bounding method the lower and upper 
bounds are as following: 
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where, 
)(ufpP is upper bound and 

)(lfpP  is lower bound of the probability of 

failure, 
iM  is safety margin for failure element i, ][ iSP is probability of 

occurrence of non-failure state in the failure element i, ))0(( iMP  and ][ iSP  is 

probability of occurrence of failure state in the failure element i, ))0(( iMP  and 

p is total number of failure elements. In these equations the ][ ji SSP   can be 

calculated as below: 

)]0()0[(][  jiji MMPSSP  ][][1 jii SSPSP                 (7) 

where ][ ji SSP   is joint probability and it can be estimated as following: 

2121 ][),( PPSSPPPPMax jiij                                   (8) 
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where 
ij  is correlation coefficient as defined by eqn (11). 
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     For calculation of probability of failure of the structural system (series system 
(

fsP )) the simple bounds method (Cornell's bounds) as defined by eqn (12) can 

be used. 
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where Pi is probability of failure of the element i, ))0(( iMP . 
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5 Formulation of RBDO problems 

The optimal design problem can be formulated mathematically as:  





 fanfs

n

PXXXPthatSuch

XXXWMinimize

),...,,(

),...,,(

21

21                                        (13) 

Where, W is weight of the structural system consist of weight of the structural 
members (Ws) and weight of the connections (Wc). The parameter Xi is design 
variable, 

fsP is probability of failure of the structural system and 
faP  is a 

specified allowable probability of failure. 
     The structural weight can be obtained from eqn (14). 
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where 
iii Al ,,  are the density, length and the cross-sectional area of the 

member i, and 
iCV  is the volume of the connection i, and n, m are the total 

number of members and connections respectively. In a structural system with 
constant density for all members and connections, the objective function can be 
shown as: 

 
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     Then the design variables are: uiii MKA ,,  where, Ki and Mui are the beam-

column connection properties (stiffness and moment capacity). 
     The volume of the connections (

iCV ) is function of the type, shape, flexibility, 

capacity and the others properties of the connections. The type and the shape of 
the connections must be selected before the optimization process, and the others 
properties can be obtained from the rM   relation of the connection. For 

reducing the number of the design variables, the moment capacity of the 
connection can be considered as a function of connection stiffness (Ki). Then the 
design variables are only Ai and Ki, and these variables can be obtained from 
solving the RBDO problem. 

6 Solving the optimization problem 

The constrained nonlinear optimization problem of eqn (13) can be changed in to 
an unconstrained optimization problem using method of interior penalty function 
[1]. In the penalty function method, a penalty term that takes care of the 
constraints is added to the original objective function. 
     Consider the original optimization problem as eqn (16). 


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)(                                (16) 

where f(x) is objective function and ),...,2,1(),( mjXg j   are constraints of the 

optimization problem. 
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     Thus, the transformed problem is as following: 
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where 
kr  is the penalty parameter.  

     The solution process is as follows: Initial value of {X} and r are chosen. {X} 
must lie in the feasible region and r must be a positive number. For the given

kr , 

the objective function ),( krX  is minimized to obtain {X*} and the convergence 

criterion of {X*} to the optimum is checked. If it is not satisfied, the parameter r 
is reduced ( 1,1  ccrr kk

) and starting from {X*} the function )*,( 1krX is 

minimized again. The step of reducing r and minimizing ),( krX  are repeated 

until the convergence criterion is satisfied.  
     In each step of the penalty function technique, the obtained unconstrained 
optimization problem can be solved by using a direct search method as Powell or 
Rosenbrock method. For example the solution process for the Powell's method is 
as follows: 1-Choose an initial vector {X} and n initial independent directions 
{Sq}, q=1,2,…,n. 2- Select new vector {Y} equal to {X}.  3- Find * to minimize 
F({X}+{Sq}) and set }{*}{}{ qSXX  for q=1,2,…,n. 4-Set }{}{}{ 1 YXSn 

   

and find * to minimize }){}({ 1 nSXF  , and set }{*}{}{ 1 nSXX  .        
5- Replace }{}{ 1 qq SS  for q=1,2,…,n.   6- Repeat from step 2. 

7 Numerical calculations and discussion 

In this section some examples of numerical calculations are presented. These 
examples show applicability of the proposed methodology and importance of the 
consideration of semi-rigid behavior of the connections in the RBDO problems. 
     Example 1: A steel frame, as shown in figure 1, is assumed to be under 
vertical and lateral loads. External loads are random variables with mean values 
as given in figure 1. Also member resistances and moment capacities of the 
connections are random variables. All of the random variables are normally 
distributed with coefficient of variation equal to 0.1.  
     It is assumed that the expected value for yield strength of the steel is σy =240 
Mpa. 

     In this example, nine failure elements are considered in the reliability 
analysis. Four failure elements are in the beam, namely a yield hinge possibility 
at each end of the beam and another yield hinge at middle of the beam and the 
possibility of failure in axial force. Also each column has two failure elements, 
namely a yield hinge possibility at the end of the column (near the beam) and the 
possibility of failure in axial force. Another failure element is possibility of 
failure in axial force in the bracing element. 
     The RBDO problem can be formulated as following: 
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     Such that: 
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where Ai, Li are area and length of the member i, Kj is rotational stiffness of the 
connection j (

kij RK 5.0 ), Ai,min is minimum cross sectional area of the member 

i (it is selected by designer before optimization). The parameters Kj,min, Kj,max are 
minimum and maximum rotational stiffness of the connection j. These values 
can be selected with respect to the shape and type of the connections by using 

appropriate 
rM  relation. By selecting the cross-sectional area and the shape of 

the section (for example: IPE, IPB, UNP and etc.) the others geometrical 
properties of the section, such as: moment of inertia, plastic modulus and etc. can 
be evaluated. 
     It is assumed that the connection weight (volume) is function of the 
connection stiffness. Then for fully pinned connection, the weight of the 
connection is minimum and for fully rigid connection, it is maximum. Relation 
between the connection volume ( )c jV and the connection stiffness ( )jK can be 

written as below: 

max,min,min, )]([ jjjjjjjC VKKCVV   ,  
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where 
max,min, , jj VV are the minimum and maximum volume of each connection, 

and   is constructional factor )1(  . This factor can be used for consideration 

the difficulties in the construction of the connections. 
     Also relation between the moment capacity (Mu) and the stiffness (K) of the 
connection can be written as: 

)( min
minmax

min,max,
min, KK

KK

MM
MM uu

uu 



                             (20) 

where 
max,min, , uu MM  are minimum and maximum moment capacities of the 

connections (it is selected by designer). 
 
 
 
                               
 
 
 
 
 
 
 

Figure 1: Steel frame of the example 1. 
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     Some different types of the beam-column connections with angles are 
considered in this example and for each case the RBDO problem is solved. 
     a) Frame with fully pinned connections: In this ideal case, the initial 
stiffness and the moment capacity of the connections are zero and connection 
weight (volume) is at least. The following limitations are considered in this 
example. 

001.0,20.1,200,100

0,0

12,10,26

3
max,

3
min,

max,min,maxmin

2
min,

2
min,

2
min,







facc

uu

brbc

PcmVcmV

MMKK

cmAcmAcmA



 

where Ac, Ab, Abr are cross-sectional area of the columns, beam and bracing.  
Initial values for the design variables are selected as: 

222 13,90,50 cmAcmAcmA brbc   

     The optimum solution can be found by solving the RDBO problem, and the 
results are as: 2*2*2* 12,2.52,26 cmAcmAcmA brbc  . 

     In this case the minimum volume of the structure without consideration the 
connection volume is 3

1min, 66692 cmV  , and with consideration the volume of 

the connections is 3
2min, 67052 cmV  . 

     b) Frame with single web angle connections: In conventional ways this 
type of the connection was assumed to behave as a fully pinned connection, but 
the real behavior of the connection is semi-rigid and this behavior can be shown 
by the Kishi and Chen power model (eqn (1)). 
For example in a web connection by angle mmL 10100100  with length l=12cm 

the parameters of Kishi and Chen model are as: 
 mKNMradmKNR uki .6.4,/.1092.1 3  . In this case the volume of each 

connection is about 3230 cmV ic  . The upper and lower bounds for these 

parameters can be obtained by changing the size and the length of the connection 
angle. Therefore the following limitations may be assumed for the connections. 

20.1,400,150,14,2,105.3,1025.0 max,min,max,min,
3

max
3

min  ccuu VVMMKK  

By selecting the suitable initial values as: 3101,20,60,40  KAAA brbc
the 

optimum solution can be found as: 
65012,64532,1031.1,12,6.48,26 2min,1min,

3*2*2*2*  VVKcmAcmAcmA brbc
 

     The optimum volume in this manner is less than the optimum volume of the 
case (a). 
     c) Frame with double web angles connections: In this type of the 
connection the limits on the connection properties are two times the values of the 
case (b). The optimum solution is given in table 1. 
     d) Frame with top and seat angles connections: The properties of these 
semi-rigid connections can be found by Kishi and Chen model. For example, in a 
connection by the angles mmL 10100100  with length l=12cm and with beam 

depth equal to 24 cm, the initial stiffness is radmKNRki /.1079.9 3 and the 

moment capacity is  mKNM u .4.27  and the volume of each connection is 
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about 3460cmV ic  . Then the constraints on the connection properties may be 

selected as:   
800,300,45,15,100.9,100.3 max,min,max,min,

3
max

3
min  ccuu VVMMKK  

     The optimum solution of this case is given in table 1. 

Table 1:  Results of the RBDO for the frame of example 1. 

Connection type 
)( 2

*

cm

Ac

 

)( 2

*

cm

Ab

 
)( 2

*

cm

Abr

 

)( 3

1min,

cm

V

)( 3

2min,

cm

V

)/.( radmKN

Kopt
 

a) fully pinned 26 52.
5 

12 66692 67052 0 

b) single web angle 26 48.
6 

12 64532 65012 1000 

c) double web angle 26 46.
7 

12 63429 64389 2000 

d) seat angle 26 46.
5 

12 63273 64392 5000 

e) seat angle + web 
angles 

26 46.
5 

12 63273 65937 7000 

f) fully rigid 26 46.
5 

12 63273 71790 ∞ 

 
     e) Frame with top and seat angles with double web angles connections: 
For a connection by angles mmL 10100100  with length l=12cm and with beam 

depth equal to 24 cm, the initial stiffness is radmKNRki /.106.14 3 and the 

moment capacity is mKNM u .5.48 . Then the constraints on the connection 

properties may be selected as:   
1500,600,70,30,1012,100.5 max,min,max,min,

3
max

3
min  ccuu VVMMKK  

     The optimum solution of this case is given in table 1. 
     f) Frame with fully rigid connections: In this ideal case, it is assumed that 
the initial stiffness of the connections is infinite (a large number 
as radmKNK /.101 6 ) and the moment capacity of the connections is greater 
than the moment capacity of the connected beam. Also in this case the 
connection weight (volume) is maximum and it is about 31800cmV ic  . Because 

of difficulty in the construction of the rigid connections, the parameter  is 
assumed to be =1.30. The results of the RBDO are shown in the table 1. It can 
be seen from the table 1 that by increasing the connection stiffness, the weight 
(volume) of the structural members will be decreased but the weight of the 
connections will be increased. Then at the optimum connection stiffness, the 
total weight of the structural system (consist weight of the connections) will be at 
least. The case c (connection by double web angles) is an optimum manner 
between all of the cases. Also this table appears that the weight of the overall 
structure in the cases of fully pinned and fully rigid is greater than the weight of 
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the other cases. Therefore, ignoring the weight and the behavior of the semi-rigid 
connections can lead to the unrealistic optimum solution in the steel frames. 
     Example 2: A steel frame as shown in figure 2 is assumed to be under 
uniform vertical loads with expected value 15 KN/m. It is assumed that the 
coefficient of variation for all of the random variables is equal to 0.1. All beam-
column connections are similar and made of angles. Basic design variables are 
rotational stiffness of the connections (K) and cross-sectional area of the 
members as: Ac1: corner columns in the first story, Ac2: middle column in the 
first story, Ac3: corner columns in the second story, Ac4: middle column in the 
second story, Ab1: beams in the first story, Ab2:  beams in the second story. 
     The constraints of this example are: 001.0,10,26 2

min,
2

min,  fabc PcmAcmA . 
     The results of the RBDO for different type of the connections are shown in 
table2.  This table indicates that the case (d) is an optimum case, and the weight 
(volume) of the overall structure in this case is at least.  

Table 2:  Results of the RBDO for the frame of example 2. 

Connect
ion 
type 

)( 2

*
1

cm

Ac

 

)( 2

*
2

cm

Ac

 
)( 2

*
3

cm

Ac

 

)( 2

*
4

cm

Ac

)( 2

*
1

cm

Ab

)( 2

*
2

cm

Ab

 
)( 3

1min,

cm

V

)( 3

2min,

cm

V
)/.( radmKN

Kopt

 

(a) 26 26 26 26 31 31 11040
0 

11184
0 

0 

(b) 26 26 26 26 27 27 10368
0 

10560
0 

1000 

(c) 26 26 26 26 25.
5 

25.
5 

10146
0 

10530
0 

2000 

(d) 26 26 26 26 21.
5 

22.
5 

94238 98712 5000 

(e) 26 26 26 26 19 21 90485 99912 7000 
(f) 26 26 26 26 16.

5 
18.
5 

86100 10482
0 

∞ 

 
 
 
 
 
 
 
 
 

Figure 2: Steel frame of example 2. 

     Example 3: In this example a two-story steel frame is considered as shown in 
figure 3. The mean values of the loads variables are as: P1=169 KN, P2=89 KN, 
P3=116 KN, P4 =31 KN. The coefficient of variation for P2, P3 and P4 is equal 
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to 0.25 and for the others loads and design variables is equal to 0.15. As shown 
in the figure 3 the number of potential yield hinge is n=19. In this example six 
design variables are considered. One is rotational stiffness of the connections (K) 
and the others are cross-sectional area of the members as: Ac1: columns in the 
first story, Ac2: columns in the second story, Ab1: left beam in the first story, 
Ab2: right beam in the first story, Ab3: beam in the second story. 
     All connections are end plates with moment capacity equal to the plastic 
moment of the connected beam. This type of the connection is usually assumed 
to be fully rigid. However, the actual behavior of this connection is semi-rigid 
and can be modeled by Fry and Morris polynomial model as described by Chen 
and Lui [7]. For the end plate connection with thickness tp=2.5 cm and height 
dg=50 cm, the initial stiffness of the connection is equal 
to radmKNRki /.102.8 4 . Two types of the connection behavior are considered. 

One is fully-rigid (ideal behavior) and another is semi-rigid behavior (actual 
behavior). Many different allowable probability of failure are considered. Results 
of the optimization process are presented in table 3 for some values of the

faP . 

Also the variation of the optimum volume is presented with respect to the
faP in 

figure 4. Results show that, the optimum weight (volume) of the overall structure 
in the case of fully-rigid is less than the case of semi-rigid. Then the assumption 
of fully rigid connections in the RBDO is unsafe and may lead to unrealistic 
results. 
 

 

Figure 3: Steel frame of example 3. 

Table 3:  Results of the RBDO for the frame of example 3. 

Connec-
tion  
Type 

001.0faP  0001.0faP

C1 C2 B1 B2 B3 Vmin C1 C2 B1 B2 B3 Vmin 

Fully-
rigid 

601.1 64.4 70.6 74.8 72.7 267473 82.7 80.1 79.4 78.4 80.6 316135 

Semi-
rigid 

70.1 55.3 81.6 76.9 73.1 280019 83.5 82.2 89.4 88.5 85.3 333667 
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8 Conclusions 

In this research, the realistic semi-rigid behavior of the beam-column 
connections is considered in the RBDO problem. The total structural weight 
(consist of the connections weight) is minimized while the probability of failure 
of the structure did not exceed a prescribed acceptable value. The numerical 
examples indicate the applicability of the proposed method. Also theses 
examples indicate the importance of the assumption of semi-rigid behavior of the 
connections in the RBDO. The assumption of fully-pinned connections is usually 
safe and over design but the assumption of fully-rigid connections is usually 
unsafe and under design. Further by the proposed method; the optimum stiffness 
of the connections can be evaluated. This optimum connection stiffness can lead 
to minimum weight of the structure. 
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Figure 4: Optimum volume of the frame of example 3 for the different 

faP . 
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