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Abstract 

A general minimum-weight cylindrical structural layout for the support of any 
combination of axial and torsional loading has been developed.  The principal 
intention in this work is to provide a test case for 3-dimensional numerical 
topological optimization.  It is anticipated that the solution may present a 
challenge, since for the small angular spacing of the truss elements the internal 
radial force component is always of the order of magnitude of the angular 
spacing for any arbitrary selected pair of helix families.  Moreover for a wide 
range of solutions slender members are an essential part of the topology. 
     A novel finite element topology optimization procedure is presented based on 
the application of Beta probability density and cumulative distribution functions.  
The procedure utilizes a family of Beta functions which provide a smooth 
transition from a uniform to a bi-modal density distribution, with constant 
probability mean to conserve constant mass. 
Keywords: Michell structure, topological optimization, beta function. 

1 Introduction 

Following the initial pioneering work of Michell [1] and a flourish of advances 
in the 1950’s and 1960’s (Cox [2]; Hemp [3]; Prager [4]; Chan [5]), the analysis 
of absolute minimum-weight truss structures entered a period of relative neglect 
until the 1990’s since when it has become a subject of renewed interest; see for 
example the work by Rozvany et al. [6–8]; Lewinski et al. [9]; Lewinski and 
Rozvany [10–12]; Graczykowski and Lewinski [13–15]; Dewhurst [16,17]; 
Dewhurst and Srithongchai [18]; Srithongchai and Dewhurst [19]; Dewhurst 
et al. [20]. 
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     The theoretical base for all of the above-mentioned body of work was 
established by Michell [1] who recognized that, in general, truss structures 
become more efficient as the spacing of the joints or nodes decrease, and so the 
theoretical optimum is an infinitely-dense but discrete system of tension and 
compression members.  The members can thus curve continuously, supported by 
a continuum of connections with other intersecting truss members, forming a 
paradoxical discrete-continuous network.  This allowed Michell to conjecture, 
and then prove, that an optimal truss must follow the orthogonal network of lines 
of maximum and minimum strain in a constant-magnitude strain field.  The 
problem of determining the positions of the nodes of an optimal truss design was 
thus reduced to finding an orthogonal network of layout curves on which the 
nodes should lie. 
     The renewed interest in Michell structures has resulted from developments of 
new methods for numerical structural optimization and the consequent need for 
proven theoretically-optimal test cases.  Pioneering work in this area involved 
the development of specialized variational principle and material volume 
constraint equations (Bendsoe and Kikuchi [21]; Bendsoe and Sigmund [22]).  
This work has great fundamental value since it establishes absolute limits on 
structural weight.  The perceived shortcomings are complexity of the method, 
and the infeasibility of manufacturing resulting geometries, which often 
comprise porous regions.  In response to the former, a much simpler procedure 
proposed by Xie and Steven [23,24], was based on progressive irreversible 
removal of material from low strain energy regions.  This method unfortunately 
has slow convergence, and in some cases fails to find known optimal structural 
geometries (Zhou and Rozvany [25]).  A third methodology, based on iterative 
adjustment of density and stiffness in finite-element iterations recognizes the 
‘cost’ of design realization of low-density porous regions, and assigns  
disproportionate stiffness reductions to reduced density.  This method, described 
as solid, isotropic microstructure with penalty (SIMP) by Rozvany et al. [26], has 
been shown to provide good matching of numerical results to known analytical 
optimal solutions, and to date SIMP is the only method to be offered 
commercially.  
     One singular exception, to the finite element based schemes described above, 
is a method recently proposed by Martinez et al. [27], which expands an initial 
simplest starting structure by iteratively dividing structural members, and at each 
step applying an optimization procedure to reposition the structure nodes for 
least weight.  This method is more narrowly focused but displays remarkable 
convergence to known Michell solutions. 
     An alternative finite element based topology optimization scheme is 
described briefly in this paper (Taggart and Dewhurst [28,29]). This procedure is 
based on an iterative prescribed material redistribution scheme in which the 
desired material distribution at each iteration is imposed directly.  A family of 
Beta probability density functions is utilized to provide a gradual transition from 
an initial unimodal material density distribution to a bimodal distribution of fully 
dense and essentially void regions.  The efficiency and validity of the scheme 
has been demonstrated through a number of 2-D and 3-D test cases for which the 
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optimal topology is known.  These test cases include classical minimum weight 
Michell structures as well as newly derived optimal topologies for 3-D 
structures. In the present work the results of application of this method to general 
cylindrical structures is described.  The described method is the subject of 
international patent application number PCT/US2006/062302. 
     Up to the present time most of the work with both Michell structures and 
numerical optimization has been two-dimensional. However, a principal focus of 
the current research project at URI is the investigation of optimal three-
dimensional structures, and this gives rise to the need for a non-trivial Michell 
solution to act as a test case.  For this purpose, in the present work, the general 
case of least-weight cylindrical structures for arbitrary combinations of torsional 
and axial loading is investigated.  
     Before developing the general cylindrical structural form, it is useful to 
review the conditions for optimality of a structure which has equal material 
properties in tension and compression.  Michell’s original conditions for 
optimality require that the structure layout must follow the lines of principal 
strain field in a strain filed with maximum and minimum strains of equal and 
constant magnitude.  The deformation of the strain filed must be compatible with 
all of the kinematic behavior of the structure, and of course the structure must be 
in equilibrium.  Michell did not stress the latter requirement since his examples 
were mainly planar and internally statically determinate.  His only non-planar 
structure is a spherical loxodrome solution which is readily recognized to be in 
equilibrium due to the symmetry of members and forces surrounding each node. 
     For the case considered here of axial and torsional loading of cylindrical 
structures, any pair of families of mutually orthogonal helical strain fields are 
candidates for optimal structure layout, subject to compatible end conditions.  
However, for given values of axial and torsional loading, only one member of 
the candidate pairs of families defines an equilibrium structure; which must 
therefore be the least weight solution.  One final comment is in order before 
proceeding to derive the structural layouts.  Since the strain fields are defined on 
a principal cylindrical surface, the solutions are only shown to be optimal with 
respect to alternative structures which do no lie outside of the cylindrical 
envelope. 

2 General cylindrical helical structures 

In the case of pure torsion of a cylinder the lines of maximum and minimum 
strain follow opposite families of 45-degree helices.  The truss structure formed 
by placing nodes, at constant angular increments along these helices, whose 
connecting members are equal helical chords, thus satisfies all of the 
requirements of a least-weight Michell structure.  A rapid prototyped example of 
such a structure is shown in Fig. 1. 
     In this case nodes are positioned at 45-degree angular increments around the 
cylinder.  Pure torsion introduces the same force magnitude into the tension and 
compression members, and the symmetry of the members surrounding each node 
ensures that the structure is in equilibrium.  In particular the radially inward 
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component of the two tension members at each node is cancelled by the radially 
outward component of the two compression members.  If an axial load is 
introduced in addition to the torsion load, then tension and compression 
members will carry different internal forces and radial equilibrium will no longer 
exist.  In this case the structure will be globally unstable at only a fraction of the 
design load.  The general requirement for radial equilibrium will be examined 
next. 
 

 

Figure 1: Pure torsion cylindrical structure. 

2.1 Condition for radial equilibrium 

   The combination of axial and torsional loading of course gives rise to principal 
strain directions which follow two orthogonal families of opposite equi-angular 
helices.  Below we will examine this more general strain field to determine the 
conditions for equilibrium with arbitrary ratios of axial to torsional loading. 
     Consider two families of equi-angular helices; left-hand α  helices 
intersecting the axial direction at constant angle γ , and right-hand  β  helices 
intersecting the axial direction at constant angle ( / 2 )π γ− .  It can be shown that 
the α  helices are represented by the parametric equations 
 

cos( ); sin( ); cot( )x r y r z rθ θ γ θ= = − =            (1) 
and the β  helices by 

cos( '); sin( '); tan( ) 'x r y r z rθ θ γ θ= = =            (2) 
 

where θ  and 'θ  are angles of rotation about the z-axis measured 
counterclockwise and clockwise respectively from the x-axis.  Without loss of 
generality the α  helices will be taken as the layout lines for the tension 
members and the β  helices will lay out the compression ones. 
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Figure 2: Strain field for axial and torsional loading ( /6γ π= ). 

     Figure 2 illustrates the helical network produced by the two helical families 
for the case / 6γ π= . 
     To establish the relationship between θ  and 'θ  between the nodes of the 
helical network we can note that they involve equal separation in the axial 
direction (z) along the two families.  Thus from (1) and (2) 
 

cot( ) tan( ) 'r rγ θ γ θ=  or  2' cot ( )θ γ θ=                                (3) 
 

Michell structures may be considered as truss structures with closely spaced 
nodes so the discrete members follow as closely as possible the curvilinear 
optimal strain field.  For the present case we will consider the nodes to be 
separated by constant parameter increments θ∆  and 'θ∆  respectively.  The 
members connected an arbitrarily selected node, taken as a local origin, thus 
have co-ordinate lengths given by Eqs. (1) and (2) as 
 

2 / 2; ; cot( )x r y r z rθ θ γ θ∆ = ∆ ∆ = ∆ ∆ = ∆                  (4) 
2' / 2; '; tan( ) 'x r y r z rθ θ γ θ∆ = ∆ ∆ = ∆ ∆ = ∆                       (5) 

 
for the tension and compression members respectively.  Assume the tension 
members carry internal force fT  and the compression members force fC.  
Equations (4) and (5) show that the tension and compression members are 
orthogonal in the y-z plane to order 2θ∆  and so equilibrium in the y and z 
directions is assured.  It therefore only remains to establish equilibrium in the x-
direction.  From Eqs.(4), the component of tensile force fT in the x-direction is 
given by 

2 1/ 22(1 cot ( ))Tx Tf f θ
γ

 ∆
=  + 

                                       (6) 

where the term in brackets is the x-component of the unit vector along the tensile 
member. 
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     Similarly from Eqs.(5) the x-component of compressive force fC is 

2 1/ 2

'
2(1 tan ( ))Cx Cf f θ

γ
 ∆

=  + 
                                         (7) 

and substituting for 'θ  from Eq.(3) gives 
2

2 1/ 2

cot ( )
2(1 tan ( ))Cx Cf f γ θ

γ
 ∆

=  + 
                                          (8) 

Substituting Eqs.(6) and (8) into the required condition Tx Cxf f=  gives after 
some trigonometric manipulation 

3tan ( )C Tf fγ=                                                       (9) 

2.2 Internal forces in structural members 

A necessary step to establish the truss volume is to relate the equilibrium 
condition, and the axial and torsional loads imposed on the structure, to the 
internal forces in the structural members.  Figure 3 shows the axial and shear 
force components imposed on a single node from the external loading.  Applying 
axial and circumferential equilibrium conditions on the node, and  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Forces acting on node. 

substituting for fC from radial equilibrium condition (9) gives 
 

4 3

3 2

(cos( ) sin ( ) / cos ( ))

(sin( ) sin ( ) / cos ( ))
n T

t T

f f

f f

γ γ γ

γ γ γ

= −

= +
                           (10) 

 

Dividing Eqs.(14) and simplifying leads to the elegant result 
 

1 1cot (( / ) / 2) / 2 cot (cot( ) / 2) / 2n tf fγ η− −= =                 (11) 
 

where η  is the angle of the resultant force; see Fig.3. 
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     This result ranges from / 4γ π=  for fn=0 (pure torsion) to 0γ =  for ft=0 
(pure axial loading.  For the latter, the structure has become simply a set of axial 
members at angular spacing θ∆  on a pitch circle of radius r.  Note also at this 
point Eq.(9) predicts 0Cf =  consistent with the circular column limiting 
solution. 
     In terms of the global loading on the structure, the axial force F and torque T 
are represented by 

2 / ; 2 /n tF f T rfπ φ π φ= ∆ = ∆                             (12) 

where 'φ θ θ∆ = ∆ + ∆  is the angular spacing of nodes around the cylinder. 
     Thus for any arbitrary combination of axial load F and torque T, the optimal 
cylindrical structure layout comprises orthogonal families of helices intersecting 
the axial direction at angles γ  and ( / 2 )π γ−  respectively, where 

1cot (( / ) / 2) / 2Fr Tγ −=                                              (13) 

3 Prescribed material redistribution method  
A finite element based topology optimization procedure has been developed in 
which, through a series of iterative analyses, material is redistributed according 
to prescribed distributions of nodal densities. This procedure has been named the 
“prescribed material redistribution” (PMR) method.  In this procedure, the 
desired final mass of the structure is specified at the beginning of the analysis.  
This material mass is initially distributed uniformly throughout the design 
domain resulting in a uniform, partially-dense material. All nodes are assigned 
an initial relative density Dfo VV /=ρ , where Vf  is the final structural volume 
and VD is the volume of the partially-dense design domain.  This initial 
distribution can be described by the probability distribution function, fo, given by 

)()( 0ρρδρ −=of , where δ is the Dirac delta function and ρ is the relative 
material density (0 ≤ ρ ≤ 1).  The corresponding cumulative distribution 
function, Fo, is given by )()( 0ρρρ −= HFo , where H is the Heaviside step 
function.  The desired final material distribution contains two distinct regions of 
fully dense material (ρ = 1) and regions that have zero relative density (ρmin <<1) 
with the fully dense regions representing the optimized topology.  The final 
material distribution can be described by the probability distribution function, ff, 
given by 

(14) 
 

and the corresponding final cumulative distribution is given by 
 

(15) 
 

     A gradual transition from the initial distribution to the final distribution can 
be achieved through the use of the beta function 

(16) 

)1()()1()( min −+−−= ρδρρρδρρ ooff

)1()()1()( min −+−−= ρρρρρρ HHF oof

( ) ( )
( )srB

srf
sr

,

1,,)(
11 −− −

==
ρρ

ρβρ
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where r and s are adjustable parameters and 
 

(17) 
 
 

where Γ is the gamma function.  The corresponding cumulative distribution 
function, also known as the incomplete beta function, is given by 

( ) ( )
1 1

0

1( ) , , ( ') (1 ') '
,

r s
incF r s d

B r s

ρ

ρ β ρ ρ ρ ρ− −= = −∫                      (22) 

     A non-dimensional time parameter, t, where 0≤t≤1, is introduced and 
appropriate functions r(t) and s(t) are specified.  The functions r(t) and s(t) are 
selected such that the total mass of material is held constant and a smooth 
transition from the initial unimodal distribution to the final bimodal distribution 
is achieved.  One such family of distributions are shown in Fig. 4. 
     At each finite element iteration, nodal densities are assigned based on the 
sorted nodal strain energies computed from the previous iteration. Nodes with 
relatively low strain energy are assigned reduced nodal densities and nodes with 
relatively high strain energy are assigned increased nodal densities.  Using a 
prescribed assignment of nodal densities, the desired progression of density 
distributions is enforced.  In computing the element stiffness matrices, the nodal 
density field is interpolated to give the Young’s modulus, E, at each Gauss point 
according to the relation ρdEE =  where Ed is the fully dense Young’s 
modulus.  Convergence to the final topology can be achieved in relatively few 
finite element iterations.   
 
 
 
 
 
 
 
 

Figure 4: Beta distributions (density and cumulative) showing transition 
from initial to final distribution for t=0.1, 0.3, 0.5, 0.7, and 0.9. 

3.1 Case studies 

The numerical procedure has been shown to converge rapidly to a wide range of 
known two-dimensional optimal truss structures.  The case shown in Fig. 5 is for 
a load at the mid-point of a pinned and a roller support.  The selected design 
domain is shown on the left of the figure and the resulting topology on the right 
is the well known center fan topology obtained by Michell [1]. 
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      For the present problem, the design domain is taken to be a thick walled 
cylinder subjected to concentrated forces at the ends of the cylinder given by fn in 
the axial and ft  in the tangential directions.  The optimized results for cases 
ranging from pure axial loading (fn=1, ft=0) to pure torsion (fn=0, ft=1) are shown 
in Fig. 6, together with the effect of decreasing element size.  
     The helix angle, γ, was estimated from these models and compared to the 
theoretical optimum given in Equation 17.  As shown in Figure 7, the numerical 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: 2-D domain and resulting topology. 

 
 
 
 
 
 
 
 
 
 

Figure 6: Results for combined axial and torsion loads; including effect of 
increasing number elements from (a) 5452 to (b) 19584 for 
(fn/ft=1). 

scheme accurately predicts the optimum helix angle for all cases.  It should be 
noted that pronounced divergence exists between the helix angles, γ, and the 
angle of the resultant forces, η, being applied to the boundary.  The difficulty of 
the case, for topology optimization, is that a single set of members tends to 
propagate from the boundary from the resultant forces, but then follow the 
optimal helix angle.  Producing the complimentary set of supporting helical 
members is a challenge. 
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4 Discussion 

A generalized minimum-weight cylindrical structural layout for the support of 
any combination of axial and torsional loading has been developed.  The 
principal intention in this work is to provide a challenging test case for 3-
dimensional numerical topological optimization.  The case presents two 
difficulties for topological optimization.  The optimal topology is determined by 
the condition of radial equilibrium.  However from Eqs. (6) and (7) it can be seen 
that any non-equilibrated radial force, resulting from a non-optimal helix angle 
γ , will only be of the order of magnitude of the node angular separation.  The 
second difficulty stems from the fact that the ratio of the internal forces in the 
compression and tension helical members is equal to 3tan γ .  Thus for 025γ <  
or 065γ >  one of the helical families will carry less than 10% of the internal load 
of the other family.  Getting both sets of helical members to emerge proved to be 
a challenge for NMR, as seen in Fig. 6.  The authors would be interested in any 
attempts by interested readers to produce the full family of solutions by SIMP or 
other methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Comparison of theoretical and numerical optimum helix angle γ . 
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