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Abstract

Topology optimization of continuum structures is a recent field in structural opti-
mization. However, an increasing research activity in this area has been developed
since the statement of the very first formulations. These formulations try to obtain
the most adequate material distribution that satisfies the imposed structural limita-
tions. The existence or absence of material in each part of the domain is usually
defined by using a continuum variable (the relative density) in order to avoid deal-
ing with a discrete optimization problem. This continuum approach of the mate-
rial properties present important advantages since conventional optimization algo-
rithms can be used. However, numerical models must be considered in order to
develop the structural analysis for intermediate values of the relative densities.

In this paper, we present some improvements in a minimum weight approach
of the structural topology optimization problem. The main goal of this paper is
to present an improved formulation that tries to reach binary 0-1 material distri-
butions by using a continuum approach of the design variables. Furthermore, a
perimeter penalization is included in the objective function to simplify the solu-
tions obtained. In addition, some computational aspects are considered in order to
reduce the computational effort.

Finally, we compare the solutions obtained by using these formulations in two
application examples.

1 Introduction

Topology optimization of continuum structures is a recent field in structural opti-
mization. However, an increasing research activity in this area has been developed
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since the statement of the very first contributions [1, 2]. The traditional statements
of this problem try to obtain the optimal distribution of material that maximizes the
stiffness of the solution by adequately distributing a predefined amount of material
in a predefined domain [1–3]. Thus, the main objective is to determine the parts of
the domain where material should exist or not. The existence or absence of mate-
rial is usually defined by using a continuum variable (the relative density) in order
to avoid dealing with a discrete optimization problem. This continuum approach of
the material properties present important advantages since conventional optimiza-
tion algorithms can be used to obtain the optimal material distribution. However,
numerical models must be considered to develop the structural analysis for inter-
mediate values of the relative densities. This fact is usually solved by using pre-
defined material microstructure models like SIMP (Solid Isotropic Material with
Penalty) [3], for example.

In this paper, we propose a different approach of the topology optimization prob-
lem that minimizes the weight of the structure with stress constraints [4–7]. This
formulation presents important advantages versus the maximum stiffness approach
since the most important instabilities associated to maximum stiffness approaches
are avoided. On the other hand, the minimum weight approach with stress con-
straints requires much larger computing resources than the maximum stiffness
approaches. Thus, computational aspects must be addressed in order to reduce
the computing effort.

The main objective of this paper is to present an improved formulation that
tries to reach binary 0-1 material distributions by using a continuum variable (the
relative density). Binary 0-1 material distributions are obtained by using a modified
objective function based on the weight of the structure. This approach presents
two important advantages since the continuum approximation allows to deal with
continuum design variables and binary solutions are finally obtained. Furthermore,
a perimeter penalization is included to obtain solutions with a reduced number of
trusses.

2 Topology optimization problem

The Topology Optimization problem with stress constraints can be formulated
from a generic point of view as

Find ρρρρρρρρρρρρρρ =
{
ρe

}
Minimize F (ρρρρρρρρρρρρρρ) = Cost(ρρρρρρρρρρρρρρ)

subject to: gj(ρρρρρρρρρρρρρρ) ≤ 0 j = 1, . . . , m

0 < ρmin ≤ ρe ≤ 1, e = 1, . . . , Ne

(1)

where ρρρρρρρρρρρρρρ is the vector of design variables, gj are the stress constraints, m is the
number of constraints considered, Ne is the number of elements of the finite ele-
ment mesh [7, 8] and ρmin is usually equal to 0.001.

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 106, © 2009 WIT Press

72  Computer Aided Optimum Design in Engineering XI



The main issue of this kind of formulations consists in the definition of the most
adequate objective function to obtain the benefits expected in the final solution and
in the definition of the stress constraints in order to guarantee that the final design
satisfies the limitations imposed.

3 Stress constraints

According to that, the authors have proposed in previous publications three differ-
ent formulations to deal with stress constraints in the topology optimization prob-
lem: the local approach, the global approach and the block aggregation of stress
constraints [4, 5, 8, 9].

The local approach of the stress constraints states one stress constraint in the
central point of each element of the mesh by comparing a reference stress with
the maximum elastic limit of the material being used [7, 8, 10, 11]. Thus, if we
introduce the required modifications to deal with the singularity phenomena [10,
12], the local stress constraints can be stated as:

ge(ρρρρρρρρρρρρρρ) =
[
σ̂
(
σσσσσσσσσσσσσσh

e (ρρρρρρρρρρρρρρ)
)
− σ̂max ϕe

]
(ρe)q ≤ 0, ϕe = 1− ε +

ε

ρe
. (2)

The exponent q can be used to deal with real stresses (q = 0) or to deal with
effective constraints (q = 1) [6]. The reference stress σ̂ is the Von Mises criterion
and σσσσσσσσσσσσσσh

e is the stress tensor of the material in the central point of element e. The
relaxation factor ε usually takes the values (0.001, 0.1) [4].

The global approach of the stress constraints is defined to avoid the large com-
puting resources required by the local approach of the stress constraints. Thus, the
local stress constraints are aggregated in only one global function by using the
Kreisselmeier-Steinhauser approach [4, 7, 13]. Thus, the global constraint can be
stated as

GKS(ρρρρρρρρρρρρρρ) =
1
µ

[
ln

(
Ne∑
e=1

exp µ(σ̂∗
e − 1)

)
− ln(Ne)

]
≤ 0, (3)

being

σ̂∗
e =

σ̂
(
σσσσσσσσσσσσσσh

e (ρρρρρρρρρρρρρρ)
)

σ̂max ϕe
. (4)

The aggregation parameter µ must take the largest value that does not introduce
numerical instabilities. These numerical instabilities are usually related to the high
non-linearity of the aggregation function [4]. The most appropriate range of values
of the aggregation parameter is (20,40). These values have demonstrated to work
properly in the application examples solved [4, 5, 8, 9].

The block aggregation of the stress constraints is a more general method that
includes both previous formulations. In this approach the domain of the structure
is divided in a predefined number of groups of elements such that all the groups

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 106, © 2009 WIT Press

Computer Aided Optimum Design in Engineering XI  73



contain approximately an equal number of elements. Thus, a global-type constraint
can be imposed over the elements of each block of the mesh [5, 8]. Thus,

Gb
KS(ρρρρρρρρρρρρρρ) =

1
µ

[
ln

(∑
e∈Bb

exp µ(σ̂∗
e − 1)

)
− ln(N b

e )

]
≤ 0 (5)

where Bb is the set of elements contained in block b and N b
e is the number of

elements contained in block b.

4 Objective function

The aim of the Topology Optimization problem with stress constraints is to deter-
mine the minimum weight structure that supports the applied forces. According
to that, the objective function of the optimization problem is the weight of the
structure:

F (ρρρρρρρρρρρρρρ) =
Ne∑
e=1

∫
Ωe

ρeγmatdΩ (6)

where γmat is the material density, ρe is the relative density of element e and ω is
the domain occupied by element e.

This objective function introduces an unexpected phenomenon since the mate-
rial distributions obtained present a large number of elements with intermediate
values of relative density, which is an unwanted solution in practice. Thus, a dif-
ferent formulation of this objective function has been proposed in order to penalize
the material distributions with intermediate values of the relative density. This for-
mulation has been obtained by following the same idea introduced in the SIMP
model of microstructure. This modified objective function can be stated as:

Fp(ρρρρρρρρρρρρρρ) =
Ne∑
e=1

∫
Ωe

Ψp(ρe) γmatdΩ, Ψp(ρe) = ρ
1
p

e , p ≥ 1 (7)

where the exponent p is the penalization factor and takes the values p ≥ 1 (figure 1
left).

This formulation of the objective function has been widely analyzed in previ-
ous publications of the authors and some application examples have been stud-
ied [4–8]. However, this formulation does not guarantee a final solution with 0-1
material distribution. This fact can be easily understood if we consider that the
derivatives of the objective function are always positive. Thus, a reduction of the
design variable always introduces a reduction in the objective function. This fact
is the expected one from a physical point of view. However, the solutions obtained
with this approach are not 0-1 when we use small values of the relaxation param-
eter (e.g. ε = 0.01). Stress constraints usually impose lower limits of the relative
densities. Thus, the lower limits of relative densities imposed by the stress con-
straints and the positive value of the derivatives of the objective function define an
optimal solution that usually presents intermediate values of the relative densities.
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Figure 1: Integrand of the objective function (Ψp(ρe)) for different values of the
penalization parameter (p) (left) and examples of optimum design vari-
ables when stress constraints are considered (right).

This issue can be explained by analyzing a simplified problem with one design
variable and one stress constraint. The optimization algorithm tries to reduce the
value of the design variable but the stress constraint avoids the reduction. The opti-
mal solution is obtained for an intermediate value of the relative density although
the penalization parameter has been used. This fact can be easily observed in fig-
ure 1 (right).

Thus, the proposed penalization of the intermediate relative densities does not
guarantee 0-1 solutions when small values of the relaxation parameter are used.
The values of the relaxation parameter must be as low as possible in order to avoid
removing useful material in the final designs but, on the other hand, it must be
large enough to avoid singularity phenomena.

The optimal solutions can be forced to reach 0-1 binary values by modifying the
objective function proposed in (7). In this paper, we propose a modified objective
function to obtain 0-1 optimal solutions as:

Fb(ρρρρρρρρρρρρρρ) =
Ne∑
e=1

∫
Ω

Ψb(ρe) γmatdΩ, (8)

Ψb(ρe) = ρ
1/(1 + β)2

e + β exp
−βρe sin(πρe), (9)

This modification introduces aggressive changes in the mathematical function since
the sign of the derivatives becomes negative in part of the range of relative density
(see figure 2). This modification produces the expected benefits but it also intro-
duces local minima and other unwanted phenomena. Thus, a whole procedure must
be analyzed in order to include this modification in the optimization process.

Most of the initial solutions for the topology optimization problems use the max-
imum value of the relative density. Thus, if we use the modified objective function
proposed in (8) the optimization algorithm will not modify the initial solution since
the value of the objective function will rise for a reduction of the design variables.
In this case, the optimum solution is the initial distribution and this is not the real
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Figure 2: Integrand of the objective function (Ψb(ρe)) (8) for different values of
penalization.

optimum solution. Thus, the modified objective function must be specifically used
to obtain a final material distribution. The optimization process must be developed
in two stages. First stage obtains an optimal material distribution with the objec-
tive function proposed in (7) by penalizing the intermediate densities. The second
stage starts with the solution obtained in the first stage and incorporates the modi-
fied objective function in order to force the elements with intermediate densities to
reach 0-1 values. This second stage must be developed by increasing progressively
the value of the parameter β proposed in (8).

The values of the parameter β must be in the range [0.260, 7.404] in order to
obtain the expected solutions. Values smaller than, approximately, 0.260 introduce
positive derivatives when ρ → 1. Values higher than, approximately, 7.404 also
introduces positive derivatives when ρ→ 1.

This formulation of the objective function does not produce minimum weight
designs since the modifications introduced forces 0-1 material distributions. These
solutions are not the optimal ones in minimum weight terms (when continuous
design variables are considered) but they produce important benefits since no ele-
ments with intermediate relative densities appear. Thus, the optimal
solutions obtained present the lowest cost in practice.

5 Parallel computing

The resulting optimization problem requires the use of efficient algorithms that
allow to deal with a large number of highly non-linear stress constraints and a
non-linear objective function. In this paper, we have used a Sequential Linear Pro-
gramming algorithm with Quadratic Line Search proposed in [6, 7, 14].

This algorithm has demonstrated to produce optimal solutions for the opti-
mization problems proposed. However, this algorithm and the sensitivity analy-
sis involved [5, 8, 15] require large computing resources (computing time) when a
large number of design variables and stress constraints is imposed. Consequently, it
is necessary to propose computational techniques that allow to reduce the compu-
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Figure 3: Speed-up obtained for the cantilever beam problem with 7200 design
variables by using the local approach of stress constraints in a computer
with 4 Intel Xeon 7120M Dual Core processors.

tational effort. According to this idea, parallelization techniques have been imple-
mented in the sensitivity analysis and the optimization algorithm. First order deriva-
tives can be computed independently for each stress constraint. Thus, the paral-
lelization of this procedure is feasible and it produces suitable performance [8].
The Optimization algorithm can be also computed in parallel since the Simplex
Algorithm involved develops a large number of matrix operations that can be com-
puted in parallel. The performance of this parallelization is not as effective as in
the sensitivity analysis computation since a number of sequential operations must
be developed between each matrix modification. This fact can be observed in fig-
ure 3. However, the total speed-up of the optimization process allows to reduce the
computing time about 6 times when 8 processors are used in a problem with 7200
design variables and constraints.

6 Perimeter penalization

The proposed objective function can be complemented with a perimeter penaliza-
tion in order to obtain simplified solutions. This perimeter penalization produces
optimal solutions with less structural elements (trusses) than the original statement
of the objective function (7) and (8). This perimeter approximation is based on the
total variation function proposed by Haber et al. [16]. Thus, the total variation of
the perimeter is defined as:

TV (ρ) =
∫

Ω\ΓJ

‖∇ρ‖ dΩ +
∫

ΓJ

|< ρ >|dΓJ (10)

where Ω =
⋃

α Ωα and Ωα is the set of disjointed regions (finite elements) that
defines the whole domain Ω. The expression |< ρ >| indicates the absolute dif-
ference of relative density between two neighbour disjunct regions Ωα (finite ele-
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ments) and Γj represents the magnitude of the frontier between two contiguous
elements (the length in a 2D problem).

In the topology optimization formulation, the relative density is uniform for
each element and, consequently, the first term of equation (10) is null. Thus, the
objective function including the perimeter penalization F̂ (ρρρρρρρρρρρρρρ) can be defined as:

F̂ (ρρρρρρρρρρρρρρ) = Fp(ρρρρρρρρρρρρρρ) + η
∑
ΓJ

|< ρ >|LJ (11)

where LJ is the length of the frontier between two contiguous elements and η is
the weight factor that relates the value of the perimeter to the value of the cost of
the structure. This factor is determined by defining a reduced percentage of the
ratio obtained by dividing the initial value of the weight by the initial value of
the perimeter of the structure. This percentage usually varies from 1 % to 5 %
in practical applications. High values of this percentage avoid the generation of
trusses in the optimal solution since the minimum perimeter solution corresponds
to an equal value of the relative density for all the elements. Thus, great areas
with intermediate densities usually appear. On the other hand, low values of this
percentage introduce an insignificant effect of the perimeter penalization.

7 Application examples

We present two structural problems frequently analyzed in the topology optimiza-
tion field. These examples are 2D structures in plane stress. The examples pro-
posed are analyzed by incorporating the perimeter penalization in order to show
the effect of this penalization in the optimal solutions obtained. In addition, the
effect of the modified objective function proposed in (8) can be also analyzed.

7.1 MBB beam

The first example corresponds to a classic MBB-beam with sliding supports [3].
Only the right half of the structure is analyzed due to symmetry. Figure 4 shows
the dimensions of the domain and the position of the external forces (13.3 103kN).
Self-weight is considered. The domain of the structure is discretized by using
Ne = 120×40 = 4800 eight-node quadrilateral elements. The material being used
is steel with density γmat = 76500 kN/m3, Young’s modulus E = 2.1 105 MPa,
Poisson’s ratio ν = 0.3 and elastic limit σ̂max = 230 MPa. The thickness of the
structure is 1 m.

Figure 5 (up) shows the solution obtained by using the local approach of the
stress constraints and the objective function proposed in (7). Figure 5 (down)
shows the optimal solution obtained by using the local approach and the modi-
fied objective function proposed in (8) in order to obtain binary 0-1 solutions.

Table 1 shows the most important parameters involved in the optimum design
formulation and the value of the final objective function as a percentage of the
original weight of the structure. Note that the modified objective function does not
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Figure 4: MBB-beam scheme (units in meters).

r

r

Figure 5: Optimal solution of the MBB-beam problem by using the local approach
of the stress constraints (up) and by using the modified objective function
(8) (down) (ε = 0.01, q = 1, η = 0.03).

Table 1: Summary of the most important parameters of the MBB-beam problem.

MBB BEAM
Local Approach

(Fig. 5 up)
Modif. Objective F.

(Fig. 5 down)

Number of elements 4800 4800

Penalization (p, β) 4 7

Final weight/Initial weight 15.43 % 19.60 %

produce minimum weight designs. However, the material distribution is essentially
binary. A more accurate solution to minimum weight design with binary distribu-
tion can be obtained by using more refined finite element meshes.
7.2 Cantilever beam

The second example corresponds to a cantilever beam with no displacements allowed
in the nodes of the left vertical edge. Figure 6 shows the dimensions of the domain
and the position of the external load (2 103kN) applied on the border of 7 contigu-
ous elements placed vertically. Self-weight is considered. The domain of the struc-
ture is discretized in Ne = 120×60 = 7200 eight-node quadrilateral elements. The
material being used is steel with density γmat = 76500 kN/m3, Young’s modulus
E = 2.1 105 MPa, Poisson’s ratio ν = 0.3 and elastic limit σ̂max = 230 MPa.
The thickness of the structure is 0.2 m.
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Figure 6: Cantilever beam scheme (units in meters).

r

Figure 7: Optimal solution of the cantilever beam problem by using the block
aggregation approach (left) and with the modified objective function (8)
(right). (ε = 0.01, µ = 40, η = 0, N b

e = 60).

Table 2: Summary of the most important parameters of the cantilever beam
problem.

CANTILEVER BEAM
Block Aggr. Approach

(Fig. 7 left)
Modif. Objective F.

(Fig. 7 right)

Number of elements 7200 7200

Number of constraints 120 120

Final weight/Initial weight 16.86 % 19.18 %

Figure 7 (left) shows the optimal solution obtained by using the block aggrega-
tion of the stress constraints. Figure 7 (right) shows the solution obtained by using
the block aggregation of the stress constraints and a final stage with the modified
objective function (8). Table 2 presents the most important parameters involved in
the optimum design formulation and the value of the final objective function as a
percentage of the original weight of the structure.

8 Conclusions

In this paper we present three different formulations to deal with stress constraints
in structural topology optimization problems: the local approach of the stress con-
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straints, the global approach of the stress constraints and a more general formula-
tion that defines groups of elements and imposes one global constraint per group.

In addition, we introduce a modified objective function based on the weight of
the structure that forces the solution to reach 0-1 values. Thus, elements with inter-
mediate relative densities are completely avoided. This objective function allows
to deal with continuum design variables during the optimization process but it pro-
duces final binary distributions of material.

We present a perimeter penalization in order to improve the results obtained and
we develop the parallelization of the most expensive algorithms in order to reduce
the computational effort.

Finally, some application examples are solved in order to verify the validity of
the algorithms and formulations proposed in this paper.
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