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Abstract 

This paper presents a practical optimization method for the shape design of solid 
structures or 3-dimensional structures in order to obtain the optimal free 
boundary shape without any parameterization of the shape for optimization. A 
solution to the rigidity design problem of a solid structure under the assumption 
that the Neumann boundary is allowed to vary is presented. The compliance is 
minimized subject to a volume constraint and the state equation. Surface 
tractions, body forces and hydrostatic pressure are applied on the specified 
regions. This design problem is formulated as a non-parametric shape 
optimization problem. The shape gradient function is theoretically derived using 
the Lagrange multiplier method, the material derivative method and the adjoint 
variable method.  With the shape gradient function and the traction method that 
was proposed by the authors as a gradient method in a Hilbert space, the smooth 
optimal shape can be easily obtained. This solution is applied to four design 
problems. The results obtained verified the effectiveness and practical utility of 
the proposed method for the shape design of solid structures with variable 
Neumann boundaries.  
Keywords: solid structure, shape optimization, traction method, optimal shape, 
non-parametric optimization, adjoint variable, material derivative. 

1 Introduction 

Solid, 3-dimensional structures are widely used in the mechanical and structural 
components of human-made objects such as vehicles, electrical appliances and 
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architectures. Determining the optimal shape of components is a universal 
problem in all areas of mechanical and structural design. Product performance 
requirements for weight, cost, rigidity, strength, vibration and other attributes are 
becoming increasingly severe because of issues related to the depletion of natural 
resources and environmental protection. The development of shape optimization 
techniques is essential in order to obtain solutions efficiently and economically, 
as well as to overcome the limitations of current designs. In the shape design of 
solid components in particular, the optimal free-form design is required in order 
to fulfill the design requirements because solid structures have many design 
degrees of freedom.  We have developed a non-parametric shape optimization 
method, which we call the “traction method” [1], and applied it to various shape 
design problems of 2D and 3D continua including plate and shell structures in 
our previous studies [2-3]. In optimizing a solid structure using a parametric 
shape optimisation method like the basis vector method, which is one of the best 
shape optimization techniques, we often encounter the problem of how to 
parameterize the shape or the problem of how to prepare the basis vectors. How 
many and which basis vectors are the best for obtaining the optimal shape? The 
result obtained also strongly depends on the basis vectors used. In contrast, with 
the traction method, we can easily obtain the smooth optimal boundary shape 
without any parameterization of the shape.  
     In this study, we applied the traction method to the shape optimization of 
solid structures under the assumption that the Neumann boundary was allowed to 
vary. It is important for structural designers to optimize the Neumann boundary 
for reducing the total amount of applied loads. The traction method is a gradient 
method in a Hilbert space.  This study considered the rigidity design problem of 
a solid structure with variable Neumann boundaries. Surface tractions, body 
forces and hydrostatic pressure were applied on the specified regions. The 
compliance was minimized subject to a volume constraint and the state equation. 
The sensitivity function, i.e., the shape gradient function, and the optimality 
conditions for this problem were derived using the Lagrange multiplier method, 
the material derivative method and the adjoint variable method. In the traction 
method, the negative shape gradient function is applied in the normal direction to 
the design surface as an external force to vary the shape. This method was 
applied to four design problems involving a beam, a dam and a tower. The effect 
of each term in the shape gradient function on the optimum shape was also 
evaluated. The validity and practical utility of this method for the optimum shape 
design of solid structures with variable Neumann boundaries were verified by the 
results obtained. 

2 Domain variation and material derivative for optimization 

A technique for representing domain variation using the speed method [4] will 
be introduced briefly before formulating the shape optimization problem. A 
detailed explanation of this technique may be found in references [1] and [5].   
     As shown in Fig. 1, it is assumed that a linear elastic body having an initial 
domain of 3Ω ⊂ R  and boundary of Γ Ω≡ ∂  undergoes variation (i.e., the 
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design velocity field) V such that its domain and boundary become sΩ  and sΓ .  
The notationR indicates a set of positive real numbers. The domain variation can 
be expressed by a one-to-one mapping ( ) : ,  0S ST X x sΩ Ω ε∈ ∈ ≤ <X . The 
notation s and ε indicate the iteration history of domain variation and a small 
positive number, respectively. Assuming a constraint is acting on the variation in 
the domainΘ Ω⊂ , the infinitesimal variation of the domain can be given by 

( ) ( )s s sT T s∆ ∆+ = +X X V ,                                           (1) 
where the design velocity field V is given as a derivative of ( )sT X  with respect 
to s and can be defined as a continuous function as 

1( ) ( ( )),   s
s s

T
T

s
Ω−∂

= ∈
∂

V x x x  ,                                   (2) 

1 3{ ( ; ) |  in }C CΘ Ω∈ = ∈ = 0V V VR Θ .                  (3) 
     The derivative of a response functional is obtained as indicated below.  When 
a response functional J is given as a domain integral of a distributed function sφ , 

s
sJ d

Ω
φ Ω= ∫  .                                                      (4) 

     The material derivative with respect to s J is given by the following 
expression. 

s s
s s nJ d V d

Ω Γ
φ Ω φ Γ′= +∫ ∫   ,                                 (5) 

where n i iV nV= .  The vector n is an outward unit normal vector.  The notation 
( )′⋅ indicates a shape (Lagrange) derivative with respect to s [4]. When a 
response functional J is given as a boundary integral of a distributed function sφ ,  

s
sJ d

Γ
φ Γ= ∫ ,                                                        (6) 

the material derivative J  is given by 

,{ ( ) }
s

s s i i s nJ n V d
Γ

φ φ φ κ Γ′= + +∫   ,                        (7) 

where κ  expresses the mean curvature when it is three dimensional. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Domain variation by V. 
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     The tensor notation employed in this paper uses Einstein's summation 
convention and a partial differential notation ,( ) ( ) /i ix⋅ = ∂ ⋅ ∂ . 

3 Formulation of shape optimization problem of solid 
structure  

The non-parametric shape optimization problem for the rigidity design of a solid 
structure with linear elastic material is solved. Consider body forces per unit 
volume ( )f x , surface forces per unit area ( )P x  and pressure ( )p x n  act onΩ , 

1Γ  and 2Γ , respectively. Letting ( )l v  denote the compliance as an index of 
rigidity, the rigidity design problem or the compliance minimization problem 
subject to constraints of volume and the state equation can be formulated as 
shown below. 

Find      (or sΩ V) ,                                                        (8) 
that  minimize    ( )l v ,                                                           (9) 

subject to    ( , ) ( ),   ,a l U= ∀ ∈v w w w                           (10) 

     0( )
s

M d M
Ω

Ω= ≤∫  ,                               (11) 

where M and 0M denote the volume and its constraint value. The bilinear form 
( , )a v w  that gives the variational strain energy and the linear form ( )l w  that 

gives the variational potential energy due to the external force are defined as  

, ,( , ) ijkl k l i ja e v w d
Ω

Ω= ∫v w ,                                       (12) 

( ) + ( )i i i i i il f w d Pw d p n w d
1 2Ω Γ Γ

Ω Γ Γ= +∫ ∫ ∫w x  ,              (13) 

where v, w and ijkle  are the displacement vector, the variational displacement 
vector and the elastic coefficients, respectively, and U denotes the suitably 
smooth function space that satisfies the displacement constraint condition.  
     Letting w and Λ denote the Lagrange multipliers for the state equation and 
the volume constraint, respectively, the Lagrangian functional L for this problem 
can be expressed as 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Boundary condition. 
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0( ) ( ) ( , )+ ( ) ( )L l a w l M MΩ, , ,Λ Λ= − + −v w v v w .               (14) 
Assuming that the body forces and the surface forces are constant with respect to 
s within the space ( 0′ ′= =f P ) and that the material is homogeneous and 

constant ( 0ijkl ijkle e′= = ), the material derivative L with respect to the domain 
variation of the Lagrangian functional L is expressed using the design velocity 
field V as follows: 

0( ) ( , ) ( , )+ ( )+ ( ) ( )GL l a a l M M lΛ′ ′ ′ ′ ′= − − − +v v w v w w V ,           (15) 

. ,( ) { ( ) )G i i i ijkl k l i j nl f v w e v w V d
Γ

Λ Γ= + − +∫V  

1
, , ,[{ ( ) ( ) ( ) } ]i j j i i i i j i j j i i i nP n v w P v w n P v w V d

Γ
κ Γ+ + + + + +∫  

2

[ ( ) div( ) ]i i i i i np v w n pv pw V d
Γ

Γ′+ + + +∫  .                 (16) 

The optimality conditions of this functional L with respect to v, w and Λ are 
expressed as shown below.   

( , )= ( ), a l U′ ′ ′∀ ∈v w w w  ,                                             (17) 
( , )= ( ), a l U′ ′ ′∀ ∈v w v v ,                                            (18) 

0 0( )=0,  0,   0M M M MΛ Λ− − = ≥ ,           (19)(20)(21) 
where eqn. (17) is the governing equation of v which coincides with the state 
eqn. (10), and eqn. (18) is the governing equation of w. The Lagrange multiplier 
Λ  is determined so as to satisfy eqns. (19)–(21). Further, a comparison of 
governing eqn. (17) and adjoint eqn. (18) yields the following self-adjoint 
relationship: 

v = w .                                                       (22) 
By substituting v (or w) into eqn. (15), the material derivative L  can be 
expressed as the dot product of the shape sensitivity function (i.e., shape gradient 
function) G and the design velocity field V as shown in eqns. (23)–(26).  

( )GL l G d d
Γ Γ

Γ Γ= ≡ ⋅ ≡ ⋅∫ ∫V n V G V  

1 2d d d
1 2Γ Γ Γ

Γ Γ Γ= ⋅ + ⋅ + ⋅∫ ∫ ∫G V G V G V  ,                                         (23) 

. ,{ ( )i i i ijkl k l i jf v w e v w Λ= + − + }G n  ,                                      (24)  

1 , , ,{ ( ) ( ) ( ) }i j j i i i i j i j j i i iP n v w P v w n P v w κ= + + + + +G n ,           (25) 

2 { ( ) div( )}i i i i ip v w n pv pw′= + + +G n  .                                 (26) 
Since the shape gradient function has been derived, the traction method can be 
applied. 

4 Traction method and shape optimization system 

The traction method [1] is a gradient method in a Hilbert space. In the traction 
method, the negative shape gradient function –G is applied in the normal 
direction to the design boundary as an external traction force, i.e., as a Neumann 
condition to vary the shape. We call this process the velocity analysis. The 
resultant displacement field (i.e., design velocity field) s∆ V  represents the 
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amount of domain variation added to the original shape to update it. Using this 
method, the smooth domain variation that minimizes the objective functional can 
be obtained. By repeating the stress analysis and the adjoint analysis that yield 
the shape gradient function, the velocity analysis and the updating of the shape 
by s∆ V , the optimum shape can be obtained. The process of the optimization 
system based on this method is schematized in Fig. 3. Other advantages of this 
method are summarized as follows: (1) it is not necessary to parameterize the 
shape unlike the basis vector method, because all nodes on the design domain 
can be moved as the design variable, (2) it is not necessary to refine the mesh, 
because the entire domain can be mapped by the traction force, (3) it assures 
smooth boundary shapes without any zigzagging, because the elastic tensor 
serves as a smoother, (4) it can be easily implemented in combination with a 
commercial FEM code, which means it has generality and practical utility for 
actual design work. More details of the traction method involving the 
verification of smoothness are given in reference [6]. 
     The governing equation of the velocity analysis with the Neumann condition 
is given as  

( , ) ( ),     Ga l CΘ= − ∀ ∈V w w w  .                               (27) 
Equation (27) can be solved by a standard finite element analysis. 
     The mean curvature κ  in eqn. (25) for the C0-continuity surface on the linear 
solid elements of a FE model was approximated by differentiating the Bezier 
surface obtained by the method of least squares. For a quadratic solid element, it 
can be calculated by using its shape function. 
     It can be confirmed that the domain variation V determined by the velocity 
analysis reduces the Lagrangian functional L. When the state equation, the 
adjoint equation and the constraints are satisfied, the perturbation expansion of L 
can be written as 

( ) ( )GL l s s∆ ∆ Ο ∆= +V .                                  (28) 
Substituting eqn. (27) into eqn. (28) and taking into account the positive 
definitiveness of ( , )a v w , based on the positive definitiveness of the elastic 
tensor ijkle  

20 : ( , ) , a Uα ξ ξ α ξ ξ∃ > ≥ ∀ ∈ ,                             (29) 
the following relationship is obtained when s∆  is sufficiently small: 

( ) 0L a s s∆ ∆ ∆= − <V, V  .                                 (30)  
This relationship definitely reduces the Lagrangian functional in the process of 
changing the domain using the velocity field V determined by eqn. (27). By 
repeating the stress analysis for evaluating the shape gradient function, the 
velocity analysis and the updating of the shape by s∆ V , the objective functional 
is minimized, resulting in the smooth optimum shape.  

5 Results of shape optimization 

To confirm the validity of the proposed solution, it was applied to four design 
problems. In all four examples, it was assumed that the body forces, the surface 
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Figure 3: Schematic diagram of traction method. 

forces and the pressure were constant with respect to s within the space 
( '( ) 0p =′ ′= =f P x n ). 

5.1 Short span beam problem 

A short span beam fixed at both ends was optimized. This short span beam is 
subjected to both shearing stress and bending stress. The boundary conditions of 
the stress analysis and of the velocity analysis are shown in Fig. 4(a) and (b), 
respectively. In the stress analysis, downward uniformly distributed loads P 
( , 0,  or 0i jP P= = ) were applied on the upper and lower variable Neumann 
boundaries, where the design boundaries to be optimized were located. In the 
velocity analysis, the length and width were kept constant. A constant volume 
constraint was applied. The initial shape and the optimal shape that was 
calculated by using eqn. (24) (except the term for body force ( )i i if v w+ ) and 
eqn. (25) as the shape gradient function, are shown respectively in Fig. 5(a) and 
(c). For comparison, the final shape calculated by only using the strain energy 
density (SED) and Λ  in eqn. (24) as the shape gradient function is shown in 
Fig. 5(b), since SED is often used in place of the shape gradient function as a 
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convenient index for the rigidity design. It is seen that both shapes (b) and (c) 
obtained have smooth boundaries. Figure 6 shows iteration histories of the 
volume and compliance in the optimization process. The values are normalized 
to the values of the initial shape. Both compliances are minimized while 
satisfying the volume constraint, but the rate of reduction is different; the rate for  
(b) is 17% while that for (c) is 19%. It is also seen that the optimal shape (c) is 
clearly different from the shape (b) at the beam center.  These results confirm the 
effectiveness of the derived shape gradient function and our solution. 
 

(a) Stress analysis

Constraint

(sliding)

(b) Velocity analysis
(fixed) Fixed

P

 
 

Figure 4: Boundary conditions for short span beam problem. 
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Figure 5: Calculated results of short span beam problem. 
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Figure 6: Iteration histories of short span beam problem. 
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Figure 7: Boundary conditions for long span beam problem. 
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Figure 8: Calculated results of long span beam problem. 
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Figure 9: Iteration histories of long span beam problem. 

5.2 Long span beam problem 

A long span beam fixed at both ends was optimized. This long span beam is 
mainly subjected to bending stress. The boundary conditions and optimization 
conditions were the same as the short span beam problem as shown in Fig. 7(a) 
and (b). The initial shape and the optimal shape that was calculated by using 
eqn. (24) (except the term for body force ( )i i if v w+ ) and eqn. (25) as the shape 
gradient function, are shown respectively in Fig. 8(a) and (c). For comparison, 
the final shape calculated by only using the strain energy density (SED) and Λ  
in eqn. (24) as the shape gradient function is shown in Fig. 8(b). It is seen that 
both shapes (b) and (c) obtained have smooth boundaries. It is also seen that the 
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optimal shape (c) is clearly different from the shape (b). Figure 9 shows iteration 
histories of the volume and compliance in the optimization process. Both 
compliances are minimized while satisfying the volume constraint, but the rate 
of reduction is different; the rate for (b) is 28% while that for (c) is 32%.  These 
results also confirm the effectiveness of the derived shape gradient function. 
 
 
 
 
 
 
 
 
 
 

Figure 10: Boundary conditions of dam problem.   
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Figure 11: Iteration histories and obtained shapes of dam problem. 

5.3 Dam problem 

Boundary conditions for the shape optimization of a dam model are shown in 
Fig. 10. In the stress analysis, the bottom of the dam was fixed, and a hydro-
pressure 3 3( )p x gxρ=n n  ( ρ : density, g: gravity acceleration) and the gravity 
force f were applied (assuming 3( ) 0,  0p x′ ′= =f ) as shown in Fig. 10(a). In the 
velocity analysis, the height and width were kept constant and the center lines of 
both side boundaries were fixed. The boundary with the hydro-pressure and the 
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opposite boundary were set as the design boundaries to be optimised as shown in 
(b). A constant volume was set as the constraint. The iteration histories and 
obtained shapes are shown in Fig. 11, where (a) is the initial shape and (c) is the 
optimal shape obtained with eqns. (24) and (26) as the shape gradient function. 
To make the same comparison as in the beam problem, the final shape calculated 
by only using SED and Λ  in eqn. (24) is shown in Fig. 11(b). It is seen that a 
smooth converged shape was obtained in each case and that the cross-section 
shapes are different. In both shapes, the objective functional decreased 
monotonically while satisfying the volume constraint. The compliance was 
reduced by 55% in (b) and by 64% in (c). These results also confirm the 
effectiveness our solution. 
 
 

Fixed

(a) Stress analysis

Constraint
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Figure 12: Boundary conditions of tower problem. 
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Figure 13: Iteration histories and obtained shapes of tower problem. 
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5.4 Tower problem 

A cylindrical tower under the gravity force f and downward nodal forces at the 
top surface as shown in Fig. 12(a) was optimized. In the velocity analysis, the 
height was kept constant, and the inside hole was fixed as shown in 
Fig. 12(b). The volume remained constant as the constraint. The iteration 
histories and obtained shapes are shown in Fig. 13, where (c) is the optimal 
shape obtained by using all the terms in eqn. (24) as the shape gradient function. 
Depending on the magnitude of the shape gradient function, the upper portion 
contracted, and the lower portion was expanded. (b) is the final shape calculated 
by only using SED and Λ  in eqn. (24) for comparison. The compliance was 
reduced by 80% in (b) and by 95% in (c) as expected, while satisfying the 
volume constraint. 

6 Conclusion 

In this paper we have proposed a practical solution to the shape optimization 
problem of solid structures. With this solution, the optimum free-form and 
smooth shape can be determined without any parameterization of the shape for 
optimization. For the rigidity design of a solid structure, a compliance 
minimization problem subject to a volume constraint is formulated as a non-
parametric shape optimization problem. In order to reduce the total amount of 
applied loads, it is considered that the Neumann boundary is allowed to vary. 
The shape gradient function for this problem is derived, and is applied to the 
traction method. The validity and practical utility of this solution were verified 
based on the results obtained for four design examples. 
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