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Abstract 

The paper presents the Mixed-Integer Non-Linear Programming (MINLP) 
approach to structural optimization. MINLP is a combined discrete/continuous 
optimization technique, where discrete binary 0-1 variables are defined for 
optimization of discrete alternatives and continuous variables for optimization of 
parameters. The MINLP optimization is performed through three steps: i.e. the 
generation of a mechanical superstructure, the modelling of an MINLP model 
formulation and the solution of the defined MINLP problem. As the 
discrete/continuous optimization problems are usually non-convex and highly 
non-linear, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) 
algorithm is applied for the optimization. The accompanied Linked Multilevel 
Hierarchical Strategy (LMHS) is developed to accelerate the convergence of the 
mentioned algorithm. Two examples are presented at the end of the paper. 
Keywords: mixed-integer non-linear programming, MINLP, structural 
optimization, structural synthesis. 

1 Introduction 

The paper presents the Mixed-Integer Non-Linear Programming (MINLP) 
approach to structural optimization. MINLP handles continuous and discrete 
binary 0-1 variables simultaneously. While continuous variables are defined for 
the continuous optimization of parameters (dimensions, stresses, strains, weights, 
costs, etc.), discrete variables are used to express discrete decisions, i.e. usually 
the existence or non-existence of structural elements inside the defined structure. 
Different materials, standard dimensions and rounded dimensions may also be 
defined as discrete alternatives. Since continuous and discrete optimizations are 
carried out simultaneously, the MINLP approach also finds optimal continuous 
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parameters, structural topology, material, standard and rounded dimensions 
simultaneously. 
     The MINLP discrete/continuous optimization problems of structural 
optimization are in most cases comprehensive, non-convex and highly non-
linear. The MINLP optimization approach is proposed to be performed through 
three steps:  

• Generation of MINLP superstructure for different structural/topology and 
other design alternatives that are candidates for a feasible and optimal 
solution. 

• Development of a special MINLP model formulation for the defined 
superstructure in an equation oriented environment. 

• Solution of the defined MINLP model, performed by suitable MINLP 
algorithm and strategies, which in the simultaneous MINLP optimization 
approach yield an optimal structural topology, material, shape, standard 
cross-sections and rounded dimensions. 

     Many different methods for solving MINLP problems have been developed in 
the near past. This paper reports the experience in solving the optimization 
problems by using the Outer-Approximation/Equality-Relaxation (OA/ER) 
algorithm [1, 2]. The Linked Multilevel Hierarchical strategy (LMHS) has been 
developed to accelerate the convergence of the mentioned algorithm. Since the 
number of discrete alternatives and defined binary 0-1 variables are usually too 
high for normal solution of the MINLP, a special reduction procedure is 
developed to reduce automatically the number of binary variables on a 
reasonable level. 
     Two examples are presented at the end of the paper. The first example shows 
the material and standard dimension optimization of a 32 m long composite I 
beam floor system and the second example deals with the simultaneous 
topology, material and standard section optimization of a single-storey industrial 
steel building structure. 

2 Mechanical superstructure 

The MINLP optimization approach to structural optimization requires the 
generation of an MINLP mechanical superstructure composed of various 
topology and design alternatives that are all candidates for a feasible and optimal 
solution. While topology alternatives represent different selections and 
interconnections of corresponding structural elements, design alternatives 
include different materials, standard and rounded dimensions.  
     The superstructure is typically described by means of unit representation: 
i.e. structural elements and their interconnection nodes. Each potential topology 
alternative is represented by a special number and a configuration of selected 
structural elements and their interconnections; each structural element may in 
addition have different material, standard and rounded dimension alternatives.  
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     Therefore, the main goal is to find within the given superstructure a feasible 
structure that is optimal with respect to topology, material, standard and rounded 
dimensions as well as all defined continuous parameters. 

3 MINLP model formulation for mechanical superstructures 

It is assumed that a general non-convex and non-linear discrete/continuous 
optimization problem can be formulated as an MINLP problem (MINLP-G) in 
the form: 

min   ( )xyc fz T +=  
s.t.    ( ) 0xh =  

         ( ) 0xg ≤             (MINLP-G) 
bCxBy ≤+  

x ∈ X = {x ∈ R
n
:  xLO ≤  x ≤  xUP} 

y ∈ Y ={0,1}
m
 

where x is a vector of continuous variables specified in the compact set X and y 
is a vector of discrete, mostly binary 0-1 variables. Functions f(x), h(x) and g(x) 
are non-linear functions involved in the objective function z, equality and 
inequality constraints, respectively. Finally, By+Cx≤b represents a subset of 
mixed linear equality/inequality constraints. 
     The above general MINLP model formulation has been adapted for the 
optimization of mechanical superstructures (MINLP-MS). The resulted 
formulation is more specific, particularly in variables and constraints. It can be 
used also for the modelling of any mechanical structure. It is given in the 
following form: 

 min   ( )xyc fz T +=  

 s.t.    ( ) 0xh =  
 ( ) 0xg ≤  
   ( ) axA ≤  
 Ey ≤ e (MINLP-MS) 
   ( ) rxRDy ≤+e  

   ( ) kdLKy ≤+ cne  

   ( ) sdSPy ≤+ m  

   ( ) tdNMy ≤+ st  

 x ∈ X = {x ∈ R
n
:  xLO ≤  x ≤  xUP} 

  y ∈ Y ={0,1}
m
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     The MINLP-MS model formulation for mechanical superstructures is 
proposed to be described as follows: 
• Included are continuous variables x={d, p} and discrete binary variables 

y={ye, ym, yst}. Continuous variables are partitioned into design variables 
d={dcn, dm, dst} and into performance (nondesign) variables p, where 
subvectors dcn ,dm and dst stand for continuous dimensions, discrete materials  
and standard dimensions, respectively. Subvectors of binary variables ye, ym 
and yst denote the potential existence of structural elements inside the 
superstructure (the topology determination) as well as the potential selection 
of the discrete materials and standard dimension alternatives, respectively. 

• The economical (or mass) objective function z involves fixed cost charges in 
the linear term cT y and dimension dependant costs in the term f(x). 

• Parameter non-linear and linear constraints h(x)=0, g(x) ≤ 0 and A(x) ≤ a  
represent the rigorous system of the design, loading, stress, deflection, 
stability, etc. constraints known from the structural analysis. 

• Integer linear constraints Ey ≤ e are proposed to describe relations between 
binary variables. 

• Mixed linear constraints Dye+R(x) ≤ r restore interconnection relations 
between currently selected or existing structural elements (corresponding   ye 

= 1) and cancel relations for currently disappearing or nonexisting elements 
(corresponding ye = 0). 

• Mixed linear constraints Kye+L(dcn) ≤ k are proposed to define the 
continuous design variables for each existing structural element. The space 
is defined only when the corresponding structure element exists (ye =1), 
otherwise it is empty. 

• Mixed linear constraints Py+S(dm) ≤ s define discrete materials dm. The 
disrete materials are defined in a similar way as the standard dimensions. 

• Mixed linear constraints My+N(dst) ≤ t define standard discrete design 
variables dst. Each standard dimension dst is determined as a scalar product 
between its vector of standard discrete dimension constants q and its vector 
of binary variables yst, eqn. (1). Only one discrete value can be selected for 
each standard dimension since the sum of binary variables must be equal 
one, eqn. (2):  
 std = ∑

∈Ii
ii yq st     (1) 

 ∑ =
∈Ii

iy 1st             (2) 

     The uper MINLP-MS model formulation for mechanical superstructures is 
presented in the condensed form. More about MINLP see Kravanja et al. [2–5]. 

4 Solving an MINLP problem 

After the MINLP model formulation is developed, the defined MINLP 
optimization problem is solved by the use of suitable MINLP algorithm and 
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strategies. A general MINLP class of optimization problems can be solved in 
principle by the following algorithms and their extensions:  
• the Nonlinear Branch and Bound, NBB, proposed and used by many authors, 

e.g. Beale [6], Gupta and Ravindran [7];  
• the Sequential Linear Discrete Programming method, SLDP, by Olsen and 

Vanderplaats [8] and Bremicker et al. [9];  
• the Extended Cutting Plane method by Westerlund et al. [10];  
• the Generalized Benders Decomposition, GBD, by Benders [11], Geoffrion 

[12]; 
• the Outer-Approximation /Equality Relaxation algorithm, OA/ER, by Kocis 

and Grossmann [13];  
• the Feasibility Technique by Mawengkang and Murtagh [14]; and  
• the LP/NLP based Branch and Bound algorithm by Quesada and 

Grossmann [15]. 

4.1 Modified OA/ER algorithm 

The OA/ER algorithm seems to be one of the most efficient algorithm to solve 
large-scale MINLP problems, when NLP subproblems are expensive and 
difficult to solve. The OA/ER algorithm consists of solving an alternative 
sequence of Non-linear Programming (NLP) optimization subproblems and 
Mixed-Integer Linear Programming (MILP) master problems. The former 
corresponds to continuous optimization of parameters for a mechanical structure 
with fixed topology (and material, standard and rounded dimensions) and yields 
an upper bound to the objective to be minimized. The latter involves a global 
approximation to the superstructure of alternatives in which new topology, 
materials, standard and rounded dimensions are identified so that its lower bound 
does not exceed the current best upper bound. The search of a convex problem is 
terminated when the predicted lower bound exceeds the upper bound, otherwise 
it is terminated when the NLP solution can be improved no more. The 
convergence is usually achieved in a few MINLP iterations. The OA/ER 
algorithm guarantees the global optimality of solutions for convex and quasi-
convex optimization problems. 
     The OA/ER algorithm as well as all other MINLP algorithms do not generally 
guarantee that the solution found is the global optimum. This is due to the 
presence of non-convex functions in the models that may cut off the global 
optimum. In order to reduce undesirable effects of nonconvexities, the Modified 
OA/ER algorithm was proposed by Kravanja and Grossmann [1] by which the 
following modifications are applied for the master problem: deactivation of 
linearizations, decomposition and deactivation of the objective function 
linearization, use of the penalty function, use of the upper bound on the objective 
function to be minimized as well as a global convexity test and a validation of 
the outer approximations. 

4.2 Linked multilevel hierarchical strategy, LMHS 

The optimal solution of comprehensive non-convex and non-linear MINLP 
problem with a high number of discrete decisions is in general very difficult to 
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be obtained. For this purpose, the LMHS strategy has been developed to 
accelerate the convergence of the OA/ER algorithm. Using the LMHS strategy, 
we decompose the original integer space and original MINLP problem in a 
hierarchical manner into several subspaces and corresponding MINLP levels. 
Each time the next MINLP optimization level is performed, the current integer 
subspace is extended by the next integer subspace and prescreened, while the 
discrete decisions belonging to all of the remaining subspaces are approximated 
by the relaxed 0-1 variables. The levels are linked by accumulating outer-
approximations and yield lower bounds to their next level objective functions to 
be minimized, which considerably improve the efficiency of the search. Decision 
levels are hierarchically classified as: 

• The level of discrete topology and material alternatives (the highest level). 
• The level of discrete standard dimension decisions (the middle level). 
• The level of rounded continuous dimension decisions (the lower level). 

     Higher levels give lower bounds to the original objective function to be 
minimized while lower levels give upper bounds. The MINLP subproblems are 
iterated about each level until there are no improvements in the NLP solution. 
Thus, we start with the discrete topology and material optimization at the relaxed 
standard dimensions. When the optimal topology and materials are reached, we 
proceed with simultaneous discrete topology, material and standard dimension 
optimization at the second level. Finally, after the optimal topology, materials 
and standard dimensions are obtained, the MINLP is carried out once more for 
complete discrete decisions at the third level.  
     The optimization model may contain up to some ten thousands of binary 0-1 
variables of alternatives. Most of them are subjected to standard and rounded 
dimensions. Since this number of 0-1 variables is too high for a normal solution 
of the MINLP, we developed a reduction procedure, which automatically reduces 
binary variables for standard and rounded dimension alternatives into a 
reasonable number. In the optimization at the second and third level are included 
only those 0-1 variables which determine standard and rounded dimension 
alternatives close to continuous dimensions, obtained at previous MINLP 
optimization iterations.  
     It should be noted, that the LMHS strategy can solve convex problems to 
global optimal solutions. 

5 Numerical examples 

The MINLP optimization approach is illustrated by two examples. The first 
example shows the material and standard dimension optimization of a 32 m long 
composite I beam floor system and the second one deals with the simultaneous 
topology, material and standard sizing optimization of an industrial steel building 
structure. 
     MINLP optimization models for the mentioned two different structures were 
developed. As an interface for mathematical modelling and data inputs/outputs 
GAMS (General Algebraic Modelling System) by Brooke et al. [16], a high level 
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language, was used. The optimizations were carried out by a user-friendly 
version of the MINLP computer package MIPSYN, the successor of programs 
PROSYN by Kravanja and Grossmann [1] and TOP by Kravanja et al. [17]. The 
Modified OA/ER algorithm and the LMHS strategy were applied, where 
GAMS/CONOPT2 (Generalized reduced-gradient method), see Drud [18], was 
used to solve NLP subproblems and GAMS/Cplex 7.0 (Branch and Bound) [19] 
was used to solve MILP master problems. The structures were modelled in 
accordance with Eurocodes: Eurocode 4 [20] for the composite structure and 
Eurocode 3 [21] for steel building structure. 

5.1 Material and standard dimension optimization of a composite I beam 
floor system 

The first example presents the material and standard dimension optimization of a 
composite I beam floor system with the span of 32 m, subjected to the self-
weight and to the uniformly distributed imposed load of 7.5 kN/m2.  

Table 1:  Material and labour costs. 

Material costs for structural steel S 235-S 355 1.0-1.2   EUR/kg 
Material costs for reinforcing steel S 400 1.2   EUR/kg 
Material costs for concrete C 25/30-C 50/60 100.0-120.0   EUR/m3 
Sheet-iron cutting costs 6.0   EUR/m1 
Cylindrical shear stud 1.2   EUR/piece 
Welding costs 8.0   EURm1 
Anti-corrosion resistant painting costs (R30) 25.0   EUR/m2 
Panelling costs  10.0   EUR/m2 
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Figure 1: Optimal cross-section of the composite I-beam floor system. 

     The task of the MINLP optimization was to find the minimal manufacturing 
costs. The material and labour costs for the composite beams were thus 
accounted for in the economical type of the objective function, subjected to the 
given design, material, resistance and deflection constraints, defined according to 
Eurocodes 4 [20]. The material and labour costs for the composite beams 
considered are shown in Table 1. The superstructure comprised 6 different 
concrete strengths (C25, C30, C35, C40, C45, C50), 3 different structural steel 
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grades (S 235, S 275, S 355), 48 various standard reinforcing steel sections as 
well as 9 different standard thickness of sheet-iron plates (from 8 mm to 40 mm) 
for webs and flanges separately. 
     The optimal result of 116.90 EUR/m2 was obtained in the 2nd MINLP 
iteration, see Figure 1. Beside the optimal self-manufacturing costs, the optimal 
concrete strength C25/30, steel grade S 355, standard reinforcing wire mesh and 
the optimal standard thickness of webs and flanges were obtained. 

5.2 Simultaneous topology, material and standard section optimization of a 
single-storey industrial steel building structure 

The second example presents the topology, material and standard section 
optimization of a single-storey industrial steel building structure. The structure 
was consisted from equal non-sway steel portal frames, which are mutually 
connected with purlins and rails. The building was 27.5 meters wide, 72.5 meters 
long and 8.25 meters high. The mass of the roof was 0.20 kg/m2 and of the 
facade cladding 0.15 kg/m2. The structure was subjected to the self-weight and to 
the variable load. The variable imposed loads 2.00 kN/m2 (snow) and 
0.50 kN/m2 (horizontal wind) were defined in the model input data. 
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Figure 2: Optimal design of the single-storey industrial building. 

     The task of the performed MINLP optimization was to find the minimal 
structure mass. The mass objective function was thus defined for the 
optimization. The internal forces and deflections were calculated by the elastic 
first-order analysis. The design/dimensioning constraints were defined in 
accordance with Eurocode 3 [21]. The structure was checked for both the 
ultimate and serviceability limit states. The superstructure was generated in 
which all possible building’s structures were embedded by 70 portal frame 
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alternatives, 40 purlin alternatives, 20 rail alternatives, 3 discrete steel material 
alternatives and 24 different alternatives of standard hot rolled HEA sections 
(from HEA 100 to 1000) for each column, beam, purlin and rail separately. 
     The final optimal solution of 158.31 tons was obtained in the 4th MINLP 
iteration. The optimal solution represents the mentioned “minimal” structure 
mass as well as the building topology of 12 portal frames, 14 purlins and 12 rails, 
see Figure 2. Columns and beams are both designed from HEA 700, purlins from 
HEA 160 and rails from HEA 100 standard sections, see Figure 3. 
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Figure 3: Optimal design of the portal frame. 

6 Conclusions 

The paper presents the Mixed-Integer Non-Linear Programming (MINLP) 
approach to structural optimization. The MINLP was found to be a successful 
optimization technique for solving structural optimization problems. 
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