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Abstract

Optimal multi-hazard structural design consists in determining a vector of design
variables, subjected to the constraints imposed by all the hazards to which the
structure is exposed, such that the cost or weight of the structure is minimized. In
particular, the design variables should be determined is such a way that the load-
induced stresses and deflections are kept below specified thresholds at all points of
the resulting structure. Since there are infinitely many such points, the optimiza-
tion problem becomes a semi-infinite programming problem. In the present paper
we discuss the difficulties involved in the numerical solution of the semi-infinite
programming problems arising in multi-hazard structural design. We show that it
is possible to construct efficient and robust optimization algorithms, by adaptively
choosing a family of finite sets of points on the structure, and by using interior
point methods for solving the corresponding optimization problems.

1 Introduction

Optimal structural design consists in determining a vector d = (d1, d2, . . . , dn)
of n design variables such that the structure defined by d satisfies a set of given
requirements, and a certain objective function, f(d), related to the cost of the struc-
ture is minimized. Multi-hazard design is required where the structure may be
subjected to p different hazards. Some of the requirements to be satisfied by the
design variables are independent of the different hazards, and can be expressed
as inequality constraints of the form g(d) ≤ 0, where g : IRn → IRm is a
given vector function. The inequality g(d) ≤ 0 is interpreted component-wise,
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so that the design variables are subject to m constraints that are independent of
the hazards. For example, some of these m constraints are simple bound con-
straints, imposing lower and upper bounds for the values of the design variables.
On the other hand, each hazard i, i = 1, 2, . . . , p, imposes constraints of the form
gi(d, h) ≤ 0, ∀h ∈ H, where gi : IRn ×H → IRmi . Here H is an infinite family
of points belonging to the structure. The constraint gi(d, h) ≤ 0, ∀h ∈ H specifies
that the load-induced stresses and deflections caused by hazard i are kept below
specified thresholds at all points ofH. With this notation, the optimal multi-hazard
structural design can be written as

min f(d) (1)

such that g(d) ≤ 0 ,

g1(d, h) ≤ 0, ∀h ∈ H ,

...

gp(d, h) ≤ 0, ∀h ∈ H .

Since H is an infinite set, the above optimization problem is a semi-infinite opti-
mization problem [1–3]. Such problems are very difficult to solve, because they
contain an infinite number of constraints. A simple minded approach is to replace
in (1) the infinite setH by a finite subset H̃ ⊂ H, and to solve the resulting (finitely
constrained) programming problem. The design parameter vector d̃, obtained by
solving this problem, may not be useful for the original optimal multi-hazard
design problem, because at some points of the resulting structure, belonging to
H \ H̃, the stresses may be too large.

In previous work [4, 5], we have proposed an iterative method for solving the
optimal multi-hazard structural design problem (1), where each iteration requires
the numerical solution of a (finitely constrained) optimization problem of the form,

min f(d) (2)

such that g(d) ≤ 0 ,

g1(d, h) ≤ −ε, ∀h ∈ Hk ,

...

gp(d, h) ≤ −ε, ∀h ∈ Hk ,

as well as the computation of the following quantities:

hi
j = argmaxh∈H gi

j(d̃, h), i = 1, . . . , p, j = 1, . . . , mi. (3)
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The approach from [4, 5] can be formalized as the following generic algorithm:
Algorithm 1
Select a (small) finite subset H0 ⊂ H and a tolerance ε > 0;

Set k ← 0 ;
repeat

Find the solution d̃ of the optimization problem (2);
If d̃ satisfies the constraints of (1),

then return d̃ as the solution of the problem and stop;
UpdateHk to obtain a larger subset Hk+1 ⊂ H;
Set k ← k + 1.

continue
The updating ofHk in the above algorithm was done by adding toHk the points

at which the maximum violations of the constraints in (1) are attained and, possi-
bly, some randomly generated points in H. The addition of these randomly gen-
erated points had a stabilization effect on the algorithm. However, because of the
randomness, the behavior of the algorithm varied slightly, both in the number of
iterations before termination and the CPU time, each time it was used.

In the present paper we propose a purely deterministic variant of Algorithm
1, that turns out to be very stable, and outperforms most of time the random algo-
rithms from [4,5]. For the sake of simplicity, we present the new algorithm only on
the simple example considered in [4,5]. This example will be presented in Section
2. The description of our adaptive iterative strategy is contained in Section 3. We
give some numerical results in Section 4, showing the robustness and efficiency of
our approach.

2 A simple example of multi-hazard structural design

In [4, 5] we have examined a structure consisting of equally spaced steel columns
supporting a long, straight horizontal metal pipe filled with water, and have con-
sidered the problem of designing a typical supporting column. The steel column
has hollow elliptical cross sections with constant thickness w. Geometrically, the
column is defined as the region between two frustums of cones with elliptical cross
sections, and given hight H . The cross sections of the bottom and the top of the
outer frustum are the ellipses that can be represented in the xy plane by the equa-
tions

x2

a2
+

y2

b2
= 1 ,

x2

A2
+

y2

B2
= 1.

We assume that the two ellipses are similar, in the sense that a/b = A/B, which
is equivalent to stating that they have the same eccentricity. Therefore A can be
expressed as

A =
aB

b
. (4)
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Therefore, we have only four design variables a, b, B and w that have to satisfy the
following bound constraints

wmin ≤ w ≤ amin ≤ a ≤ b ≤ B ≤ Bmax , (5)

where the quantities wmin < amin < Bmax are specified.
A vertical force denoted by V , equal to the weight of the pipe and the water

it contains, is applied concentrically at the top of the column. Horizontal forces
are applied at the center line of the pipe. They can be due to seismic effects or to
wind effects. The seismic forces are denoted by F e, can act in any direction, and
are the same for all directions. The wind forces also act from any direction and
are denoted by Fw cosα, where α is the angle between the wind direction and the
normal to the longitudinal axis of the pipe. They are largest when normal to the
pipe and are assumed to be negligible when parallel to the pipe.

It is easily shown that at coordinate h from the top of the column the compres-
sion stress due to gravity loading (defined as the sum of the vertical concentric
load V and the self-weight of the column above the coordinate h, divided by the
area of the cross section at coordinate h) is given by

sg(a, b, B, w, h) =
2bHV + 2bHπ(a + b− w)wγh + (a + b)(B − b)πwγh2

2π(H(a + b− w)b + (a + b)(B − b)h)w
,

(6)
where γ is the specific weight of the column material.

It is also shown (see [5] for technical details) that the bending stress at coor-
dinate h, induced by a force F that makes an angle α with the major axis of the
ellipse and is applied at a point situated at distance c above the column, can be
expressed by the formula

sb(a, b, B, w, F, α, h) =
F (c + h) q0(a(h), b(h), α)

µ(a(h), b(h), w, α)
, (7)

where

a(h) =
(

1− h

H

)
a +

h

H

aB

b
, b(h) =

(
1− h

H

)
b +

h

H
B ,

q0(a, b, α) =
√

.5(a2 + b2 + (b2 − a2) cos(2α)),

µ(a, b, w, α) =
π

8
ab
(
a2 + b2 +

(
b2 − a2

)
cos(2α)

)
− π

8
(a− w)(b − w)

(
(a− w)2 + (b− w)2 +

(
(b− w)2 − (a− w)2

)
cos(2α)

)
.

We assume that the wind force, of magnitude Fw, acts along the y-axis, i.e.,
along the major axis of the ellipse. The corresponding bending stress is obtained
by taking F = Fw and α = 0 in (7),

sw
b (a, b, B, w, h) = sb(a, b, B, w, Fw, 0, h) . (8)
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Therefore the total stress in this case is

sw(a, b, B, w, h) = sg(a, b, B, w, h) + sw
b (a, b, B, w, h) . (9)

Since we would like this stress to be below the maximum admissible stress σ we
obtain a constraint of the form

sw(a, b, B, w, h) ≤ σ, ∀j ∈ H . (10)

As the direction of the force F e of the earthquake is not known, the corresponding
constraint becomes

s e(a, b, B, w, h) = sg(a, b, B, w, h) + max
α∈[0,π]

sb(a, b, B, w, F e, α, h) ≤ σ,

0 ≤ h ≤ H . (11)

The optimal design problem we are considering is to find design variables a, b, B, w
satisfying the constraints (5), (10), and (11), such that the mass of the correspond-
ing column is minimized. That mass is our objective function. It can be expressed
in terms of the design variables as

ϕ(a, b, B, w) =
Hπρ(a(b + B) + b(b + B − 2w))w

2b
, (12)

where ρ is the specific mass of the column material. We note that in the Interna-
tional System of Units (SI), the specific mass and the specific weight are related
by the equation

ρ =
γ

9.80665
· (13)

With the notation introduced above, our optimal multi-hazard structural design
problem can be written as

min
a,b,B,w

ϕ(a, b, B, w) (14)

such that sw(a, b, B, w) ≤ σ ,

se(a, b, B, w) ≤ σ ,

wmin ≤ w ≤ amin ≤ a ≤ b ≤ B ≤ Bmax .

This is a particular case of the general formulation (1), described in the introduc-
tion.

3 An iterative method

In this section we present our deterministic variant of Algorithm 1 for solving the
semi-infinite programming problem (14). In this case we haveH = [0, H ], and we
choose the initial finite subset ofH to be
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H0 =
{

0 ,
H

3
,

2H

3
, H

}
. (15)

At a typical iteration we compute the solution (ã, b̃, B̃, w̃) of the nonlinear opti-
mization problem

min
a,b,B,w

ϕ(a, b, B, w) (16)

such that sw(a, b, B, w, h) ≤ σ − ε

2πw
, h ∈ Hk ,

s e(a, b, B, w, h) ≤ σ − ε

2πw
, h ∈ Hk ,

wmin ≤ w ≤ amin ≤ a ≤ b ≤ B ≤ Bmax .

Then we compute the maximum stresses and denote

hW = argmaxh∈[O,H]s
w(ã, b̃, B̃, w̃, h), msW = sw(ã, b̃, B̃, w̃, hW ). (17)

hQ = argmaxh∈[O,H]s
e(ã, b̃, B̃, w̃, h), msQ = se(ã, b̃, B̃, w̃, hQ), (18)

In our implementation the points hW and hQ are found within a tolerance of .01ε,
by using a golden section method procedure [6, pp. 726].

If both msW and msQ are less than σ − .1ε then we return (ã, b̃, B̃, w̃) as the
solution of the optimal multi-hazard structural design problem (14). Otherwise we
update Hk and start a new iteration. It turns out that there are some advantages if
at the end of the first iteration (k = 0)we constructH1 by enlarging the set{

0 ,
H

2
, H

}
, (19)

rather than the set (15). For k > we always constructHk+1 by enlargingHk. The
precise updating method is described in the following algorithm:

Algorithm 2
Choose a tolerance ε > 0;
Consider the setH0 ⊂ H defined by (15);

Set k ← 0 ;
repeat

Compute the solution d̃ = (ã, b̃, B̃, w̃) of (16);
Compute (17) and (18) within a tolerance of .01ε;
If max{msW, msQ} < σ − .1ε,

then return d̃ as the solution of the problem and stop;
If k = 0, then replaceHk with the set (19);
If msW > σ − .1ε, then setHk+1 = Hk

⋃{hW};
If msQ > σ − .1ε, then setHk+1 = Hk

⋃{hQ};
Set k ← k + 1.

continue
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4 Numerical results

In the numerical results to be presented in this section we have taken the following
values for the constants defining our model

H = 3.6 m, c = 0.6 m, V = 5000 N, γ = 76820 N/m3,

F e = 6000 N, Fw = 8000 N, σ = 165 MPa,

wmin = .003 m, amin = .01 m, Bmax = .24 m.

Previous numerical experiments reported in [5] showed that interior point meth-
ods (see [7] and the literature cited therein) are very efficient in solving nonlinear
programming problems in structural optimization.

The numerical results from this section were obtained by using the Mathematica
function FindMinimum with the option Method -> "InteriorPoint",
and the following trivial starting point

a = 0.4Bmax, b = 0.5Bmax, B = 0.9Bmax, w = 1.5wmin .

By using Algorithm 2 we obtained the following values for the design parameters:

a = 0.0532 m, b = 0.0915 m, B = 0.2031 m, w = 0.003 m.

The (optimal) weight of the corresponding column is 61.1 kg. Algorithm 2 needed
6 iterations to find this solution and the total CPU time (on a Dell Optiplex machine
with 1 GB of RAM and a 3.20 GHz Pentium 4 processor) was 2.8 seconds. The
same values for the design variables were obtained with the method described
in [4,5]. As we mentioned before that method has a random component so that the
CPU time varies each time the program is run. We run the program 10 times for
the problem considered in this section. While the program gave the same solution
in all of the runs the execution time varied. The average CPU time was 5.4 seconds
with a standard deviation of one second. Also the average number of iterations was
8.5 with a standard deviation of almost .97 iterations.

5 Conclusions

In this paper we have described an iterative method that can be easily coupled
with interior point methods in order to solve efficiently semi-infinite program-
ming problems arising in multi-hazard structural design. Our method is robust
and strictly deterministic. The new method appears to be more efficient, both in
terms of number of iterations and computational time, than our previous algo-
rithms which were not completely deterministic.

Disclaimer Certain commercial software products are identified in this paper in
order to adequately specify the computational procedures. Such identification does
not imply recommendation or endorsement by the National Institute of Standards
and Technology nor does it imply that the software products identified are neces-
sarily the best available for the purpose.
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