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Abstract 

The aim of this paper is to present results of using fundamental machine element 
design principles into re-designing optimally heavy-duty springs used in terrain 
machinery and in industry. The use of standard procedures often results in 
recurrent fatigue fracture failures. This reveals the need for optimal innovative 
design principles which are not found in standards. Analytical calculations reveal 
the main causes of failures to be the local bending due to eccentric highly impact 
force application at squared and ground ends and wearing away of the shot 
peening protection. Optimum design is used to solve the problem by finding the 
optimal spring. Goals are minimisation of wire volume, space restriction, desired 
spring rate, avoidance of surging and achieving reliably long fatigue life. 
Available fatigue dimensioning methods are used with amplitude-mean stress 
diagrams and S-N curve approaches. Conclusions are supported by using full 3D 
solid FEM analysis by which the stresses, strains, deformations and natural 
frequencies and modes are obtained. Then FEM is used to optimally fine tune 
and validate the best result. 
Keywords:  industrial optimisation, helical springs, fatigue. 

1 Introduction 

Background for this study is observation that conventionally designed helical 
springs did not have the expected long lifetime. Analyses of many case studies 
have gives gave clue that a additional effects contributed strongly, Among these 
are the highly impacting bending and torsional stress peaks due to non 
symmetric pressure application at ground spring ends.  The conventional 
standards of dimensioning do not take these effects into account.  
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     Standard fatigue life estimates are based on static strengths and existence of 
only torsional stresses and give widely differing answers. This scatter can be 
taken into account using probabilistic and fuzzy approach. Generally 
optimisation is  not yet often applied to practical problem according to 
Hernandez and Fontan [1]. One obstacle is difficulty of goal formulation and 
understanding of basic principles of machine design. Another obstacle is that 
problems are highly non-linear and have mostly discrete variables. Gradient type 
methods have proved inapplicable. One proven algorithm can be used to generate 
a restricted number of virtual prototypes and then select the one which appeals 
best to the end user.  
     The goals in this study are the following. First the main mechanism causing 
failure are identified and corrective redesign ideas are generated. Then 
systematic optimisation approach is activated. The  model includes the models 
for dimensioning and fatigue life estimation presented in texts of Norton [2], 
Shigley and Mischke [3] and Spotts et al [4]. The goals are formulated to 
maximise fuzzy satisfaction on performance of  deflection vs. load behaviours, 
reliable fatigue life, dynamic behaviour and space constraints. 

2 Materials and methods 

2.1 Object of study 

The object of study is a range of helical compression springs which are used in 
heavy-duty application with very high life reliability requirements. Their main 
function is to store energy from displacements and also withstand shocks and 
impacts.  Ground ends cause local bending moment as illustrated in Fig.1. 
 

Figure 1: Definitions of helical spring with ground ends. 

     Definitions of spring variables and fuzzy satisfaction functions are shown in 
Fig.2.  The fuzzy function px  has max height unity, but area is not unity. 
Probability density function of mean value of property variable xx is pdf(xx), 
height is not unity but area is unity. 

2.2 Design goal formulation  

2.2.1 The overall design goal  
This is to maximise the satisfaction P(G) of end user customer on the realised 
design event, or a set denoted by G. It is a union of partial design events. The 
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cost means now volume of the spring wire. Reliable functioning of the spring is 
achieved by using as desired properties the respective safety factors, SF. The 
space for the spring is restricted in width and height. 
 

                                a)                                                           b) 

Figure 2: Definitions. a) Spring variables. b) Satisfaction function. 
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Total satisfaction of this design event is product of partial functions 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )987654321 GPGPGPGPGPGPGPGPGPGP ••••••••=      (2) 

2.2.2 Design satisfaction functions  
These are defined on four points to give a trapezoidal form, Fig.2. Value of 
property, xx(IG) with index IG is on horizontal scale  and satisfaction px on xx is 
on vertical scale, ranging from 0 no good to 1 unit or fully good. Machine 
element design methods are based on strength diagrams and theoretical and 
empirical relationships between their variables. If the mean value of a stochastic 
property xx(IG) is within the most satisfactory range, and if its design value is 
normally distributed, then worse or better values may occur. Design is robust 
axiomatically when fuzzy range can be produced and the design range is in it. 

2.2.3 Discrete variables 
Optimum strategy was done by exhaustive search loops. Preliminary choices are 
(a) Choice of assuming not (Isp = 1) shot peening or yes (Isp = 2), (b) Choice of 
impact factor V, (c) choice of an assuming of volume fraction f of inclusions,     
1. Loop for material selection  Im = 1 to Nim ,  
2. Loop for spring helix diameter  D(Idd)   variation, Idd= 1 to NIdd 
3. Loop for wire diameter d(Id),   variation, Id = 1 to NId 
4. Loop for total number of coils Ntot  variation, INtot= 1 to NINtot 

2.2.4 Material property data for optimisation 
Now a reasonable selection for materials is ASTM A232 chrome Vanadium 
steels AISI 6150. According to Norton  [2]  it is suitable for fatigue loading.  

IG =1 px(IG,I
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Shear modulus is G = 79000MPa. Ultimate tensile strength depends on the 
diameter d  of the wire 
 

[ ] [ ] [ ] 192.0,MPa1880,mm,, mmutm ==== mAdMPaR
d
ASR                              (3) 

 

The following definitions of strength values are derived by empirical 
relationships from the static tensile strength, Re is yield strength in tension, Sys is 
yield strength in torsion and  Sus is ultimate strength in  shear 
 

 ( ) utusutysute 67.0,6.0...577.0,75.0 SSSSSR ===                   (4) 
 

2.2.5 Load stresses 
Load to the spring comes from a cam mechanism. Nominal shear stress depends 
on load force. 
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shear stress is maximal in the inner coil due to  smallest curvature.   
 

nFwFFnFwnwFxy, , TKTFTFTKK ==⋅== ⋅ττ             (6) 
 

where the correction factor Kw of nominal shear stress  
Spring force F depends linearly by spring rate k  on deflection f 
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Shear stress dependence on deflection is  
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The springs are generally pre-stressed with deflection  f = fpre. The mechanism 
using the spring gives additional deflection fcam and their sum is the maximum 
deflection  and shear stresses     
  

maxmaxminmincamminmaxcamminpre ,,,, fKfKfffhfff kk ==+=∆== ττ                   (9) 
 

The mean and amplitude shear stresses are 
   

( ) ( )minmax2
1

amplminmax2
1

mean , ττττττ −=+=                                            (10) 

2.2.6  Properties evaluated by satisfaction functions  
2.2.6.1 Material cost of wire spring  Cost is now wire material volume    
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Here Ntot is the total number of coils and Na is the active number. It is 2 less due 
to the bent and ground end manufacturing. 

Figure 3: Comparison of the three torsional diagrams. 

2.2.6.2 Torsional safety factor estimation using Goodman diagram  Torsional 
Goodman diagram safety factor is based on the following definitions by    
Norton [2]. The torsional endurance strength is reversed strength Sew which is 
independent of size and alloy composition. Sew = 310 MPa   applies for not shot 
peened springs  or who have lost their protective layer.  Sew = 465  MPa  applies  
for  shot peened springs. Endurance shear stress is  
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The torsional safety factor by Goodman diagram [2]  with dimensionless 
variables .In this model the basic stress level is the initial prestressing load 
defined as the minimum shear stress  τi  defined as τmin at initial pre-stressing   
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2.2.6.3 Torsional safety factor estimation using Shigley–Mischke diagram    
Torsional safety factor by Shigley and Mischke [3] model is given by  
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2.2.6.4 Torsional safety factor estimation using Spotts et al  diagram  In this 
model by Spotts et al [4] the yield strength in shear Sys is defined by a different 
factor than by Goodman in Norton  [2]. They also define a pulsating shear stress 
endurance τe’. These strength models are used in the model   
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2.2.6.5 Torsional safety factor estimation using  an engineering method  This 
is based on  Finnish standard procedures  [5]. No shot peening is assumed. The 
allowed stress is calculated  from static tensile strength Rm using conservative 
strength reduction factors due to loading severity  and amplitude magnitude 
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Here endurance utilisation reduction factor at large amplitudes is  Campl = 0.8 ,to  
ensure long life Clonglife = .9, to consider compression loading  Chelix = 0.31 and 
for tension loading 0.37. Now the more conservative option 0.31 is chosen. 
  

2.2.6.6 Surge frequency and spring rate  The surge frequency by  [4] should be 
higher than the main operational frequency of the machine 10 Hz by [3],        
xx(7) = fsurge. Spring rate k e.g. (6) within a desired range, xx(8) = k 
  

2.2.6.7 Fatigue life of spring by combining a Haigh diagram and the S-N 
diagram This method of calculating fatigue life Nlife combines the Haigh 
diagram of modified Goodman type and the S-N diagram by Meyer [6]. 
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where   three stress ratios are used  
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here Va is relative effective stress amplitude, Vm is relative effective mean stress 
and Ve is relative effective  corrected fatigue strength. In these  
 

( ) ( )σ σ τ σ σ τvm m
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m
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va a
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a
2= + = +3 3

1 2 1 2/ /
,                        (19) 

 

The dynamic normal stress is dangerous in springs. It has been observed often 
that cracks occur at angle α = 20o. If they are normal to max. principal stress 
then the  ratio of max. σx stress to shear stress is about 2 at angle 20°, Fig 5. 
 

Figure 4: The method of calculating fatigue lives of crack initiation time 
from normal mean stress and amplitude stress vs. S-N diagram. 

     The ideal fatigue strength or the mean endurance limit of the rotating-bending 
specimens of steels can be calculated from static strength. The regression fit 
formula by Just  [7] is used since is that it gives dependence on Z. Bellot and 
Gantois  [8] give data for the effect of volume fraction f of inclusions on  Z(f). In 
strong constructional steels with Rm = 950MPa, parameter A =1700.   Fracture 
strain is obtained by a tensile test of material   
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using this one obtains for the dependency of the ideal bending fatigue strength 
with zero mean strength  on the static tensile strength     
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The fully corrected fatigue strength is   Se 
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Now the total factor is about unity. Eccentricity is obtained as, Fig.1    
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Static bending stress at critical section at 1+1/8 turns is  
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Static shear stress vs. force F is given by equation   
 

nFwFFnFwnwFxy, , TKTFTFTKK ==⋅== ⋅ττ             (25) 

   
Principal stress is dominant in activating fatigue crack initiation, σy = 0   
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The maximum and minimum values of stress depend on load force F = kf . 
     Now at principal direction the shear stress is zero and the mean values of 
principal stress and amplitude are equal to the equivalent values 
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2.2.6.8 Impact  on the spring  end The rotating moving mass of the cam hits an 
elastic steel body of a spring producing impact stress. Typical cams rotate with 
frequency  f = 8Hz, period T = 1/f = 1/8 sec.Cam rise s = ∆h = 0.046m, rise time  
is about  ∆t = xT = 0.1⋅1/8. It is assumed that the rise takes place during  0.1 of 
the full rotation angle.  The impactor mass M hits the object mass m of spring. 
This gives rise to axial speed  v0s and an impact factor V, Burr and Cheatham 
[11] 
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here  β is  mass ratio of object mass m and impactor mass M.  The following 
definitions are needed 
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The static stresses in the spring are related as follows 
 

τ σ τxyF F x,F xy,F= = ⋅T F U,              (30) 
 

The normal stress induced by impact is assumed as  
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The shear stress induced by impact is  τim  
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The resultant stresses are assumed to be sum of the continuously varying static 
stress due to force F and the very short time impact stresses 
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Figure 5: Definitions of impacting loads causing shear and normal stress 
impacts. Angle of crack is often α = 20°. 

2.2.6.9 Normalised height needed to fit the spring into given space  
Free length L0 for spring is sum of fully compressed length Lc, = Ntd reserve and  
Sa = xdNa and usable deflection f. Data fit to DIN 2095 [10] gives factor x (C). 
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2.2.7 Satisfaction function for each property 
These are defined  at four points at  Table 1. 

Table 1:  Satisfaction functions  for properties. 

IG Property  xx(IG)     
 px(IG,IP)  

IP = 1 
0.1 

IP = 2 
1  

IP = 3 
 1 

IP = 4 
 0.1 

1 xx(1) = K        1  2  3  500 
2 xx(2) = Ngoodm   0.1  2  3  4 
3 xx(3) = Nmisch    0.1  2  3  4 
4 xx(4) = Nspott    0.1  2  3  4 
5 xx(5) = Ntaual    0.1  2  3  4 
6 xx(6)=A,Nlife =10A  0.1  8  15  20 
7 xx(7) = fsurge ,     20 30 500 800 
8 xx(8) = k *10-3 20 40 50 100 
9 xx(9) = height   .90 .97 1.02 1.10 

3 Results 

Results are shown in Table 2. Here the spring rate k = 44000N/m,                      
eR = eccentricity /0.5D, V = 4 is impact factor. Safety factor Ntaual is for no shot 
peening, P(G) is total satisfaction. Angle of principal stress to axis α = 28o which 
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Table 2:  Results of optimisation.  Analysed cases are R1..R6. Geometry 
code 564 are optimal choices: d(5) = 0.014, D(6) = 0.12, Nt(4) = 7. 

Case   R1 R2 R3 R4 R5 R6 d(Itt)  
(m)   

D(Idd) 
 (m) 

Ntot 

eR,   0.3 0.0 0.3 0.3 0 0 0.008 0.070 4 
Isp  1 1 1 2 2 2 0.009 0.080 5 
f, incl. 0 0 0.01 0.01 0.01 0 0.010 0.090 6 
Ngoodm 1 1 1 1.5 1.5 1.5 0.012 0.10 7 
Nmisch 1.33 1.33 1.33 1.65 1.65 1.65 0.014 0.11 8 
Nspott 0.56 0.56 0.56 0.56 0.56 0.56 0.016 0.12 - 
Ntaual     0.67 0.67 0.67 0.67 0.67 0.67 - - - 
A,life 8 11.6 5.4 5.4 7.2 11.6  - - - 
P(G)   0.017 0.017 0.0017 0.008 0.020 0.030 - - - 

 
From Table 2 it may be seen the following trends with rather high impact V = 4: 
• An optimal case R6 has total satisfaction is as 0.03 when there is no 

eccentricity, shot peening protection is preserved even at high impact V = 4 
loading, and inclusion content is minimal using high quality  steel.   

• Still more optimal case is obtained from case R6 by setting V = 0 and eR = 0,   
f = 0 .High life with A = 13.2 and angle α = 45 are obtained as by pure 
torsion. 

• The angle α between x-axis and largest principal stress at case R1 varied with 
V : V = 0, α = 45, when V = 4, α = 28 , with high impacts V = 20, α = 11. 

3.1 FEM analysis results 

The MSC Nastran FEM [12] program is used. Geometry is shown in Fig. 6. 
     The dimensions in the case study of FEM in Fig. 6 were d = 10mm, 
D=100mm, total number of coils Ntot = 8.The end were not ground or bent, but  
the load was applied by an even distribution of point forces. 
 

  
 

Figure 6: Spring results. a) Symmetric loading 360o on the top of the spring; 
o
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b) Non symmetric loading 270 ; c) Natural frequency 2055 Hz. 



     Effectively 1 coil was fixed. Analytical spring rate was k = 14000N/m FEM 
gave the same. The von Mises stress on surface of the non symmetric loading is 
325 MPa and for symmetric loading von Mises stress is 263 MPa. First natural 
frequency causing upper turns to impact to each other is 2055 Hz. 

The following conclusions can be drawn. 
• Standards assume in helical springs only torsional stresses  with  no bending 

with impacts  which arise due to eccentric load force application. 
• Impact loading increases  the static torsion and but more bending stresses.   

Life time predictions decrease by many decades. The  predicted angle of the 
largest principal stress relative to axis is close to observed angles.   

• Shot peening gives protection by compressive surface residual stresses . But 
notable wear between coils can delete it from critical areas. 

• Inclusions at critical bent surface areas reduce lifetimes notably.   
• Optimal design dimensioning guarantees satisfactory long reliable service life     
• FEM analyses reveal stress gradients  agreeing with  the analytical results.   
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4 Conclusions 




