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Abstract 

This paper presents the cost optimization of a single-storey industrial steel 
building structure. The optimization is performed by the Mixed-Integer          
Non-linear programming approach, MINLP. The structure consists of the main 
portal frames, which are mutually connected with the purlins. All structural 
elements are proposed to be built up of standard hot rolled I sections. The 
MINLP performs the simultaneous cost, topology and discrete sizes optimization 
of the building structure. Since the discrete/continuous optimization problem is 
non-convex and highly non-linear, the Modified Outer-Approximation/Equality-
Relaxation (OA/ER) algorithm has been used for the optimization. Alongside the 
optimal structure’s costs, the optimal number of main portal frames and purlins 
as well as all standard cross-section sizes have been obtained.  
Keywords:  structural optimization, cost optimization, topology optimization, 
discrete sizes optimization, mixed-integer non-linear programming, MINLP, 
industrial building. 

1 Introduction 

This paper deals with the simultaneous cost, topology and standard discrete sizes 
optimization of single-storey industrial steel building structure. The optimization 
is performed by the Mixed-Integer Non-linear Programming, MINLP. The 
MINLP is a combined discrete and continuous optimization technique. The 
MINLP handles with continuous and discrete binary 0-1 variables 
simultaneously. While continuous variables are defined for the continuous 
optimization of parameters (dimensions, stresses, strains, weights, costs, etc.), 
discrete variables are used to express discrete decisions, i.e. usually the existence 
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or non-existence of structural elements inside the defined structure. Different 
materials and standard dimensions may also be defined as discrete alternatives. 
Since continuous and discrete optimizations are carried out simultaneously, the 
MINLP approach also finds optimal continuous parameters (e.g. structural 
costs), structural topology and discrete standard cross-sizes simultaneously. 

The considered steel building structures are consisted from the main portal 
frames, which are mutually connected with the purlins. All structural elements 
are proposed to be built up of standard hot rolled I sections. The MINLP 
discrete/continuous optimization problems of such sceletal structures are in most 
cases comprehensive, non-convex and highly non-linear. It is proposed that the 
optimization will be performed through three steps. The first one includes the 
generation of a mechanical superstructure of different topology and standard 
sizes alternatives, the second one involves the development of an MINLP model 
formulation and the last one consists of a solution for the defined MINLP 
optimization problem. The Modified Outer-Approximation/Equality-Relaxation 
algorithm is used to perform the optimization, see Kravanja and Grossmann [1], 
Kravanja et al. [2-4]. 

The objective of the optimization is to minimize the self-manufacturing costs 
of the single-storey industrial building. The defined cost objective function 
comprises material costs, anti-corrosion protection painting costs, steel cutting 
costs as well as assembling and erection costs of the structure. The cost objective 
function is subjected to the set of the equality and inequality constraints known 
from the structural analysis. The dimensioning of steel members is performed in 
accordance with Eurocode 3 [5].  

A single-phase MINLP costs optimization is proposed. It starts with the 
continuous NLP optimization of a relative high defined structural topology, 
while standard sizes are relaxed temporary into continuous parameters. When the 
optimal continuous topology and other parameters are found, standard sizes of 
cross-sections are re-established and the simultaneous cost, topology and 
standard sizes optimization of beams, columns and purlins is then continued until 
the optimal solution is found.  

2 Single-storey industrial steel building 

The paper discusses a single-storey industrial steel building structure, see fig. 1. 
The structures are consisted from the main portal frames, mutually connected 
with the purlins. Columns, beams and purlins are proposed to be built up of steel 
standard hot rolled I sections. 

In the field of the optimization of steel sceletal structures many different 
optimization methods have been proposed. O’Brien and Dixon [6] have proposed 
a linear programming approach for the optimal design of pitched roof frames. 
Guerlement et al. [7] have introduced a practical method for single-storey steel 
structures, based on a discrete minimum weight design and Eurocode 3 design 
constraints. Recently, Saka [8] has considered an optimum design of pitched roof 
steel frames with haunched rafters by using a genetic algorithm. One of the latest  
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researches reported in this field is the work of Hernández et al. [9], where 
authors have considered minimum weight design of steel portal frames with 
software developed for structural optimization. 

This paper introduces the simultaneous cost, topology and standard discrete 
sizes optimization of a single-storey industrial steel building structure. The 
optimization is performed by the Mixed-Integer Non-linear Programming, 
MINLP. The objective of the optimization is to minimize the structure’s self-
manufacturing costs. 

The considered sceletal structure is analysed under the combined effects of 
the self-weight of frame members, uniformly distributed surface variable load 
(snow and wind), concentrated horizontal variable load (wind) and an initial 
frame imperfection. The purlins are designed to transfer permanent load (self-
weight of purlins and weight of roof) and variable load (snow and wind) to frame 
structures.  
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Figure 1: Single-storey industrial building. 

     Internal forces are calculated by the elastic first-order analysis. The 
dimensioning of steel members is performed in accordance with Eurocode 3 for 
the conditions of both ultimate limit and serviceability limit states. 

When the ultimate limit state of structural members is considered, the 
elements are checked for axial resistance, shear resistance, bending moment 
resistance, interaction between bending moment and axial force, axial 
compression/buckling resistance, lateral buckling resistance as well as for the 
interaction between axial compression/buckling and lateral buckling resistance 
moment. 

Considering the serviceability limit state, the vertical deflections of beams 
and purlins are calculated and checked. The total deflection δmax subjected to the 
overall load and the deflections δ2 subjected to the variable imposed load are 
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calculated to be smaller than limited maximum values: span/200 and span/250, 
respectively. The horizontal deflections ∆ are also checked for the recommended 
limits: the relative horizontal deflections should be smaller then the height/150 of 
each portal frame. 

3 MINLP model formulation for mechanical superstructures 

It is assumed that a general nonconvex and nonlinear discrete/continuous 
optimization problem can be formulated as an MINLP problem (MINLP-G) in 
the form: 

 min   ( )xyc fz T +=  

 s.t.    ( ) 0xh =  
 ( ) 0xg ≤  (MINLP-G) 

 bCxBy ≤+  

 x ∈ X = {x ∈ R
n
:  xLO ≤  x ≤  xUP} 

  y ∈ Y ={0,1}
m
 

where x is a vector of continuous variables specified in the compact set X and y 
is a vector of discrete, mostly binary 0-1 variables. Functions f(x), h(x) and g(x) 
are nonlinear functions involved in the objective function z, equality and 
inequality constraints, respectively. Finally, By+Cx≤b represents a subset of 
mixed linear equality/inequality constraints. 

The above general MINLP model formulation has been adapted for the 
optimization of mechanical superstructures (MINLP-SMS). The resulted 
formulation is more specific, particularly in variables and constraints. It can be 
used also for the modelling the steel industrial building. It is given in the 
following form: 

 min   ( )xyc fz T +=  

 s.t.    ( ) 0xh =  
 ( ) 0xg ≤  
   ( ) axA ≤  
 Ey ≤ e (MINLP-SMS) 
   ( ) rxRDy ≤+e  

   ( ) kdLKy ≤+ cne  

   ( ) sdSPy ≤+ st  

 x ∈ X = {x ∈ R
n
:  xLO ≤  x ≤  xUP} 

  y ∈ Y ={0,1}
m
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The MINLP model formulation for mechanical superstructures is proposed to be 
described as follows: 
• Included are continuous variables x={d, p} and discrete binary variables 

y={ye, yst}. Continuous variables are partitioned into design variables d={dcn, 
dst} and into performance (nondesign) variables p, where subvectors dcn and 
dst stand for continuous and standard dimensions, respectively. Subvectors 
of binary variables ye and yst denote the potential existence of structural 
elements inside the superstructure (the topology determination) and the 
potential selection of standard dimension alternatives, respectively. 

• The economical objective function z involves fixed cost charges in the linear 
term cT y and dimension dependant costs in the term f(x). 

• Parameter nonlinear and linear constraints h(x)=0, g(x) ≤ 0 and A(x) ≤ a  
represent the rigorous system of the design, loading, stress, deflection, 
stability, etc. constraints known from the structural analysis. 

• Integer linear constraints Ey ≤ e are proposed to describe relations between 
binary variables. 

• Mixed linear constraints Dye+R(x) ≤ r restore interconnection relations 
between currently selected or existing structural elements (corresponding     
ye = 1) and cancel relations for currently disappearing or nonexisting 
elements (corresponding ye = 0). 

• Mixed linear constraints Kye+L(dcn) ≤ k are proposed to define the 
continuous design variables for each existing structural element. The space 
is defined only when the corresponding structure element exists (ye =1), 
otherwise it is empty. 

• Mixed linear constraints Py+S(dst) ≤ s define standard discrete design 
variables dst. Each standard discrete dimension dst is determined as a scalar 
product between its vector of standard discrete dimension constants q and its 
vector of binary variables yst, eqn. (1). Only one discrete value can be 
selected for each standard dimension since the sum of binary variables must 
be equal one, eqn. (2):  

 
 std = ∑

∈Ii
ii yq st     (1) 

 ∑ =
∈Ii

iy 1st             (2) 

4 The optimization model 

A special MINLP optimization model for a single-storey industrial steel building 
structure has been developed. The model is constructed on the basis of the 
mentioned MINLP-SMS special model formulation for mechanical 
superstructures. As an interface for mathematical modelling and data 
inputs/outputs GAMS (General Algebraic Modelling System), a high level 
language, is used [10]. 
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The optimization model for the steel structure contains the cost objective 
function, which is subjected to the (in)equality constraints. The variables include 
continuous variables for dimensions, internal forces, deflections, costs, etc. as 
well as discrete binary 0-1 variables for the topology and standard sizes 
determination. Equality and inequality constraints represent a rigorous system of 
the design, loading, resistance, stress, deflections and stability functions. The 
dimensioning constraints are determined according to Eurocode 3 (ultimate and 
serviceability limit states).  

The defined cost objective function, see eqn. (3), comprises material costs, 
anti-corrosion protection painting costs, steel cutting costs as well as assembling 
and erection costs of the structure: 

 
min:    (3) 

( )∑∑∑∑ ×=+×+×+××=
i

erectiicut
i

iintpa
i

imat
i

i Cy|yCLcutCACVolCOST 1ρ  

where COST [EUR] represents the self-manufacturing costs of the building 
structure, ΣiVoli [m3] stands for the volumes of i, i∈ I, structural members of the 
building, ρ denotes steel density 7850 kg/m3, Cmat is the price of the structural 
steel [EUR/kg]; ΣiAi [m2] stands for the surface areas of i steel members, Cpaint 
[EUR/m2] is the price of the anti-corrosion and fire (R 30) protection painting; 
ΣiLcuti [m] represents steel cutting lengths of i members, Ccut [EUR/m] is the 
price of the steel cutting; Σi(yi׀ yi=1) denotes a sum of non-zero binary variables 
which represents the number of the existing structural elements = the building 
topology, and Cerect [EUR] is the price of assembling end erection of each i-th 
building element, i.e. each portal frame and purlin. 

5 MINLP optimization 

The Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm by 
Kravanja and Grossmann [1] was used to perform the MINLP optimization. The 
OA/ER algorithm consists of solving an alternative sequence of Non-linear 
Programming optimization subproblems (NLP) and Mixed-Integer Linear 
Programming master problems (MILP). The former corresponds to the 
optimization of parameters for a sceletal structure with fixed topology and 
standard sizes and yields an upper bound to the objective to be minimized. The 
latter involves a global approximation to the superstructure of alternatives in 
which a new topology and standard sizes are identified so that its lower bound 
does not exceed the current best upper bound. The search of a convex problem is 
terminated when the predicted lower bound exceeds the upper bound, otherwise 
it is terminated when the NLP solution can be improved no more. The OA/ER 
algorithm guarantees the global optimality of solutions for convex and quasi-
convex optimization problems. 

The OA/ER algorithm as well as all other mentioned MINLP algorithms do 
not generally guarantee that the solution found is the global optimum. This is due 
to the presence of nonconvex functions in the models that may cut off the global 
optimum. In order to reduce undesirable effects of nonconvexities the following 
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modifications are applied for the master problem of the OA/ER algorithm: the 
deactivation of linearizations, the decomposition and the deactivation of the 
objective function linearization, the use of the penalty function, the use of the 
upper bound on the objective function to be minimized as well as the global 
convexity test and the validation of the outer approximations. 

A single-phase MINLP is proposed for the optimization. It starts with the 
continuous NLP optimization of a relative high defined structural topology (with 
a high number of portal frames and purlins), while standard sizes are relaxed 
temporary into continuous parameters. When the optimal continuous topology 
and other parameters are found, standard sizes of cross-sections are re-
established and the simultaneous discrete/continuous cost, topology and standard 
sizes optimization of beams, columns and purlins is then continued until the 
optimal solution is found.  
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Figure 2: Optimal design of the single-storey industrial building. 

6 The example 

The paper presents an example of the cost, topology and standard sizes 
optimization of a single-storey industrial building. The building is 23 m wide,   
65 m long and 7 m high, see fig. 2. The structure is consisted from equal        
non-sway steel portal frames which are mutually connected with the purlins.  

The portal frame is subjected to self-weight g (structure plus roof), uniformly 
distributed surface variable load q (snow s and vertical wind wvert), concentrated 
variable load P at the top of columns (caused by horizontal wind whoriz and initial 
frame imperfection Fφ). Variable imposed load (s = 1.60 kN/m2, wvert = 0.14 
kN/m2 and whoriz = 0.60 kN/m2) is defined as the uniformly distributed surface 
load in the model input data. Both, the horizontal concentrated load at the top of 
the columns and the vertical uniformly distributed line load on the beams are 
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calculated through the optimization automatically considering the intermediate 
distance between the portal frames.  

Design/dimensioning was performed in accordance with Eurocode 3. The 
design loads were calculated for the conditions of both ultimate limit states and 
serviceability limit states: (a) for ultimate limit states: 1.35·(g + s + wvert + P), (b) 
for serviceability limit states: 1.00·g + 0.90·(s + wvert + P). Internal forces and 
deflections were calculated by the elastic first-order analysis.  
The portal frame superstructure was generated in which all possible structures 
were embedded by 30 portal frame alternatives, 20 purlin alternatives and 24 
different alternatives of standard hot rolled European wide flange HEA sections 
(from HEA 100 to HEA 1000) for each column, beam and purlin separately. The 
material used was steel S 355. 
     The optimization was performed by the MINLP optimization approach. The 
task of the optimization was to find the minimal structure self-manufacturing 
costs, the optimal topology (the optimal number of portal frames and purlins) 
and optimal standard sizes. The economical objective function included the 
material, anti-corrosion and fire (R 30) protection painting, steel cutting as well 
as assembling and erection costs of the structure. The economic data for the 
optimization are presented in table 1. 

Table 1:  Economic data for optimization. 

Cmat price of structural steel S 355     1.1 EUR/kg 
Cpaint anti-corrosion protecting costs   22.0 EUR/m2 
Ccut steel cutting costs     4.0 EUR/m 
Cerect assembling and erection costs 500.0 EUR/portal frame 

200.0 EUR/purlin 
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Figure 3: Optimal design of the portal frame. 
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     The optimization was carried out by a user-friendly version of the MINLP 
computer package MIPSYN, the successor of PROSYN [1] and TOP [2-4]. As 
an interface for mathematical modelling GAMS (General Algebraic Modelling 
System was used [10]. The Modified OA/ER algorithm and the single-phase 
optimization were applied, where GAMS/CONOPT3 (Generalized reduced-
gradient method) [11] was used to solve NLP subproblems and GAMS/Cplex 7.0 
(Branch and Bound) [12] was used to solve MILP master problems.  

The final optimal solution of 189039 EUR was obtained in the 3rd main 
MINLP iteration. The optimal solution represents the obtained »minimal« self 
material and labour costs of the considered steel industrial building structure. 
The selling price may be at least twice higher. The solution also comprises the 
calculated structure mass of 122.42 tons, the building topology of 11 portal 
frames and 12 purlins, fig. 2, and all standard sizes of columns, beams and 
purlins, fig. 3. 

7 Conclusions 

The paper presents the simultaneous cost, topology and standard sizes 
optimization of the single-storey industrial steel building structure. It is proposed 
that the optimization will be performed by the Mixed-Integer Non-linear 
Programming (MINLP) approach. The MINLP was found to be a successful 
optimization technique for solving this type of structures. 
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