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Abstract 

Optimization of mechanical components is an important aspect of the 
engineering process; a well-designed system will lead to money saving during 
the production phase and better machine life.  On the other hand, optimization 
actions will increase the engineering investment. Consequently, and since 
computer time is inexpensive, an efficient design strategy will tend to transfer 
the effort from the staff to the computers.  This paper presents an efficient design 
tool made to carry out this task: a new optimization model based on genetic 
algorithms is developed to work with commercial finite element software. The 
objective is to automate optimization of static criteria (stresses, weight, strength, 
etc.) with finite element models. In the proposed model, the process acts on two 
geometric aspects of the shape to be optimized: it controls the position of the 
vertices defining the edges of the volume and, in order to minimize stresses 
concentrations, it can add and define fillet between surfaces. The model is 
validated from some benchmark tests.  An industrial application is presented: the 
genetic algorithms-finite element model is employed to design the fillets at the 
crown-blade junctions of a hydroelectric turbine.  The results show that the 
model converges to a very efficient solution without any engineer intervention. 
Keywords:  genetic algorithms, shape optimization, finite element, hydroelectric 
turbine. 

1 Introduction 

The design process of any mechanical part controls its global cost. A well-
designed system will lead to money saving during the production phase and 
better machine life. Incorporate an optimization cycle into the design process is 
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then primordial.  On the other hand, the optimization of mechanical components 
could increase the delays and cost related to the design. As much as 70 to 80% of 
the final production cost can result from the design process [1]. Consequently, 
and since computer time is inexpensive, an efficient design strategy will tend to 
transfer the effort from the staff to the computers. Powerful calculation 
approaches, such as finite element method (FEM) and numerical optimization 
schemes are then required.  
     This paper includes a brief description of the genetic algorithms in section 2. 
Section 3 is devoted to the coupling method while section 4 discusses the 
application case. 

2 Genetic algorithms 

Genetic algorithms (GA) can be considered as a controlled random walk, they 
efficiently exploit information from previous configurations to generate new 
configurations with improved performances expected [2]. GA are formed 
principally with three operators; selection, crossover and mutation. Numerous 
operator types are described in the literature depending on the problem to be 
solved and the coding used to represent the configurations. Imagination is the 
only limit to the development of new operators. Michalewicz [3] gives a detailed 
description of the different selection, crossover and mutation types. 

2.1 Description of the genetic algorithms process 

Genetic algorithms use a population of configurations, called individual, to 
evolve over a number of generations. Each individual is represented by its 
genetic material, called chromosome. For optimization purpose, the chromosome 
is described by the design variables. Different kinds of coding are possible. 
However, this paper will deal with binary coding (Figure 1).  
 

10011000101001110

X1 X2 X3Design variable →

Chromosome →
 

Figure 1: Individual chromosome representation. 

     The process starts with an initial population of n individuals. The first 
individual has the default configuration; while the others are randomly 
generated. The performance of each individual is then evaluated in regard to the 
objective function and the handling of constraints (if some are considered). 
Using the performance of these individuals, a selection is done in the population 
to identify valuable parents. Higher is the performance of an individual, higher is 
its probability to become parent. Two parents are match randomly to exchange 
their genetic materials to form the offspring for the next generation. This 
exchange process is called crossover. The crossover process is associated to a 
probability (pc). If this process doesn’t happen, the parents are directly 
transferred to the next generation meaning the cloning of these individuals. After 
the crossover operator and before forming the next generation, all the individuals 
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are forced to undergo a mutation process. A probability (pm) dictates if the 
mutation occurs. The evolution procedure is repeated until the population 
converges to a certain level or simply if the maximum number of generation is 
reached. 
     The efficiency of the genetic algorithms has been proved experimentally for a 
wide range of scientific field [4,5]. Genetic algorithms have a theoretical 
background mostly developed by Holland [6] and well described by 
Goldberg [2].  

2.2 Genetic operators 

Despite de fact that no general conclusion can be brought, some guidelines have 
been proposed to determine the best type of operator and genetic algorithms 
parameters like pc, pm and the size of the population. These guidelines are mostly 
based on empirical experiments, where different kinds of problem can lead to 
different conclusions. Srinivas and Patnaik [7] expose some empirical evidences 
regarding the choice of the operators and the parameters. Section 2.4 discusses in 
more details the selection of genetic operators and parameters. 

2.2.1 Selection 
Different types of selections are implanted in the optimization model described 
in section 3, but only the method called tournament selection is used for the 
application presented in section 4. The tournament selection randomly identifies 
some competitors from the population to compete against each other. The one 
with the highest performance win a parent status.  
     The tournament selection permits to control the selective pressure put on the 
population. The population diversity is adjusted by modification of the 
competitor number. Greater competitor numbers in the tournament increase the 
chances to focus the search over the best individuals - meaning a greater 
selective pressure. On the other hand, with only two competitors, the possibility 
of becoming a parent remains open to a larger band of the population - meaning 
a lesser selective pressure.    

2.2.2 Crossover 
Four types of crossover are used for the application presented in section 4; 
1-point, 2-point, uniform and weighted crossover. The 1-point crossover 
randomly determines a cross-point in the length of the chromosome, combines 
the left part of the chromosome of the first parent with the right side of the 
chromosome of the second parent to form the first offspring. A second offspring 
is inversely generated. 
     The 2-point crossover implies two cross-points. The first offspring has the 
beginning and the last parts of the chromosome of the first parent and the middle 
portion of the second one. The second offspring is again inversely generated. 
     The procedure is quite different for the uniform crossover. With this type of 
crossover, a random 0 or 1 is selected for each bit of the chromosome and for the 
bit where a 0 is chosen; the first offspring uses the bit of the first parent at this 
position. On the other hand, when a 1 is selected, the first offspring takes the bit 
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of the second parent at this position. For the second offspring, the random 0 and 
1 are inversely used. The name uniform comes from the fact that the random 0 or 
1 has the same probability to be selected (50%).  
     The weighted crossover is similar to the uniform crossover. However, the 
probability of selecting a random 0 or 1 is not fixed at 50%. Also, it is important 
to sort the two parents to make sure that the first parents correspond to the best 
ones, in regard to their fitness. Than, the probability allocated to select a random 
0 is fixed between 50% and 100% with these limits excluded. By using this 
method the first offspring will have a greater contribution from the best parent. 
Again, the second offspring is inversely generated. 

2.2.3 Mutation 
Mutation acts as an insurance policy against premature loss of important notions 
when it is used with selection and crossover operators [2]. With binary coding, 
the mutation proceeds by changing a bit indicating 0 by 1 or vice versa. The 
mutation operation progresses over each bit of the chromosome with a 
probability pm of being applied. The pm probability is normally very small 
(<1%). Over a certain level, the mutation could turn the genetic algorithm into a 
simple random walk, meaning a lost in the efficiency related to the search 
strategy. 

2.3 Convergence of genetic algorithms 

The definition of some convergence criteria allows the genetic algorithms to stop 
the search process without attainment of the global optimum. On the other hand, 
the evolution (not the process), ends when the best configuration reaches the 
global optimum of a given environment. Different kinds of convergence criteria 
could define an acceptable solution. The criteria could be based on the best 
individual or on the average of the population. A maximum number of 
generations or a maximum allowable time for the evolution process could also be 
specified.   

2.4 Parameters in genetic algorithms 

As indicated in section 2.2, there is no strait way to determine which type of 
operators or what are the best parameters. Nevertheless, Eiben et al. [8] give a 
good review of this topic and propose a classification. This classification is used 
here to illustrate the operators and parameters setting. The discussion is 
presented for the parameters, but the same can be applied to operators.  
     Two categories divide the way the parameters can be set. The first is a static 
setting and the second is a dynamic setting. The static setting, also called 
parameters tuning, is the simplest way to define parameters, but does not lead to 
the optimal evolution. Parameters tuning relies on tests made before starting the 
experiments in order to find the best combination of parameters (e.g. pc, pm and 
the population size). The parameters remain constant over the generations. 
Parameters tuning could be done with trial-and-error method, with design of 
experiment (DOE), by using other heuristic algorithms or simply with experience 
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on similar problems. Due to the fact that these settings cannot change the balance 
between the exploration and the exploitation of the search domain during the 
evolution process, it can be said that they do not correspond to optimal settings. 
     During the searching, it could be appropriate to modify the 
exploration/exploitation balance. Normally, at the beginning it is important to 
explore the domain, whereas at the end it is preferable to exploit the best 
domain’s region to reach the optimum. This can be achieved with a dynamic 
setting of the parameters, also called parameters control. The control could be 
deterministic or stochastic.  
     In this paper, the operators and parameters are set with a static setting. This 
choice has been made considering that no dynamic setting taking care of all the 
interactions between operators and parameters is already available. On the other 
hand, the coupling proposed between genetic algorithms and finite element has 
to be validated on complex components (section 4) before developing a dynamic 
setting approach. Table 1 gives the static parameters used. The parameter values 
selection was based on the recommendations of De Jong [9] and 
Grefenstette [10] combined to tests on simple forms (beam in flexion, stress 
concentration in notches and cylinder in tension). 

Table 1:  Genetic parameters used. 

Parameter Value 
Population size 50 

pc 0.8 
pm 0.005 

Tournament competitors 2 

2.5 Advantages and inconvenient of genetic algorithms 

Genetic algorithms have numerous advantages over traditional optimization 
methods (Haupt and Haupt [11]). The most important are that they can optimize 
continuous and discrete variables, can treat analytical function, experimental or 
numerical simulation data, while dealing with large amount of variables. 
Moreover, the derivative information is not required. Genetic algorithms search 
from a wide sampling of the cost surface which can be very complex. Finally, 
genetic algorithms provide a list of potential solutions. 
     Nevertheless, genetic algorithms could be time consuming depending on the 
evaluation required to characterize the performance of each individual. For shape 
optimization, such as the case of section 4, where the finite element method is 
used to define the performance of a configuration, this could be an issue. 
Section 3 discusses the method used to minimize the impact of the finite element 
analyse. It is also important to mention that genetic algorithms do not guarantee 
that the global optimum will be found. However, with a good genetic setting, this 
method will provide improvement compare to the initial configuration.  
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3 Design optimization model 

The optimization design tool created with Tcl/Tk and named AGC, allows to 
couple the genetic algorithm approach with commercial FEM software 
(ANSYS). AGC controls all the settings and the processing related to the genetic 
algorithms, all the information needed to optimize the mechanical component 
and all the parameters required to produce the evaluation by the FEM. 
     The vertices defining a line or a B-spline of the geometry can be used as 
design variables to modify the shape of the component. Also, the addition and 
the optimization of fillet radius between surfaces can be set as design variables.  
     Finally, AGC creates a list of the chromosome evaluated by the finite element 
software during an experiment. This list ensures not to reanalyse twice the same 
individual in successive generations. Because the FEM analysis part corresponds 
approximately to 95% of the total time elapsed during the processing of an 
individual, this list leads to great time saving. Figure 2 shows, for the experiment 
presented in the next section, the relative numbers of finite element 
configurations evaluated in each generation (50 individuals). It is interesting to 
note that less than 5 individuals (10% of the population) are evaluated after 
generation 20. For one individual, it took 4 minutes (in average) for the 
evaluation step - geometry construction, meshing, solving operations and reading 
of the objective result. This gave a total of 3.33 hours for the process of the 
generation 0 (100% of the population analysed). Consequently, it would take 
166.5 hours for a complete evolution process. However, because of the already 
analysed chromosomes list, the total evolution process took 52.5 hours, which 
corresponds to a saving of 114 hours. The evolution process was run on an 
Intel® server with 2 Xeon® Dual Core 1.6GHz and 2.0 Go of RAM. 
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Figure 2: Percentage of finite element analyse. 

4 Application 

This section presents the optimization of the fillet between the crown-blade 
junctions of a hydroelectric turbine. Figure 3 details the turbine components. The 
objective is to reduce the maximum static load stress (Von Mises). As shown by 
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Sabourin et al. [12], the critical zone of such a structure is located at the crown-
blade junction in the trailing edge vicinity (Figure 4).  
 

Z Crown 

Blade 

Belt 

R

 
 

Figure 3: Hydroelectric turbine’s detail. 

 
     The treated turbine has fictive dimensions. Nevertheless, the pressure defined 
on the blade was tuned to realistic power output (52.3 MW). The turbine is 
composed of 20 blades. Because of the symmetry, only one blade is analysed. 
     The crown-blade junction is defined by four design variables described in 
table 2 and Figure 4. The design variables are independent - variable fillet radii. 
The transition between two different fillet radii is also controlled to be smooth. 
     Because genetic algorithms are a stochastic process, five experiments were 
conducted. The evolution was limited to a maximum of 50 generations with a 
convergence criterion stopping the process when no more than 1% of average 
improvement was observed over ten generations. The other genetic parameters 
used are described in table 1. The results of these experiments are presented in 
table 3 below. Because the goal is to minimize the maximum stress, only the 
results from the best experiment (e.g. experiment 3) will be further discussed. 
 

Table 2:  Design variables. 

Design 
variable 

(fillet 
radius) 

Description 
Lower 
bound 
(mm) 

Upper 
bound 
(mm) 

Precision 
(decimal) 

Default 
value 
(mm) 

X1 Suction side 
leading edge 12 63 0 38 

X2 Pressure side 
leading edge 12 63 0 38 

X3 Suction side 
trailing edge 12 63 0 38 

X4 Pressure side 
trailing edge 12 63 0 38 
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Figure 4: Description of the design variables. 

 

Table 3:  Experiment results. 

Best value (mm) 
Experiment 
(time-hour) Crossover X1 X2 X3 X4 

Stop  
gen. 

Best 
ind. 

(gen-
ind) 

Stress 
max 

(MPa) 

Impro-
vement  

Original - 38 38 38 38 - - 295.34 - 
1 (31.2) 1-point 62 60 44 53 40 18-27 280.65 4.97% 
2 (31.6) 1-point 59 58 43 59 42 42-37 282.87 4.22% 
3 (52.5) Uniform 63 56 46 55 50 17-3 276.11 6.51% 

4 (35.3) Weighted 
70% 56 62 42 50 25 10-46 283.87 3.88% 

5 (26.9) 2-point 61 55 38 48 21 9-45 278.70 5.63% 
 
 
     Experiment 3 is the only one that did not stop with the convergence criteria. 
However, it’s the experiment with the highest improvement (6.51%). Figure 5 
presents the evolution process for experiment 3. The stress curve of the best 
individual and the stress curve of the population average are shown. The chart of 
Figure 5 shows that, even if the average population did not converge, the best 
individual converged at generation 17. An elite strategy was also incorporated 
into the genetic process to ensure that if no improvement appeared over the 
evolution, the original configuration live through all the process. In other words, 
the best individual can never get worst over successive generations. Figure 6 
shows the differences between the original configuration and the best 
configuration found in these experiments. The stress distribution remains similar 
but the stress maximum value decreases from 293.34 MPa to 276.11 MPa. 
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Figure 5: Evolution process of experiment 3. 

 
Original configuration :

X1 = 38     X2 = 38      X3 = 38     X4 = 38
Best configuration (exp.3) :

X1 = 63     X2 = 56      X3 = 46     X4 = 55

 

Figure 6: Von Mises stress. 

 

5 Conclusion  

This paper described a new model coupling genetic algorithms and finite element 
to optimize mechanical components. The goal of this optimization is to improve 
the shape of any structure to reduce the static stress in critical regions. The model 
was applied to the optimization of the crown-blade junction (fillet radius) of a 
hydroelectric turbine. In this application, the stress was decreased by a factor of 
6.5%. The stress reduction could have reached a higher level with the inclusion 
of a few more design variables such as the thickness of the crown. However, the 
objective here was to illustrate the efficiency of the model even with very limited 
modifications of the initial form.  In fact, such a fine-tuning of the fillet junction 
would be difficult to realize without a powerful numerical optimization method.  
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Nonetheless, it is clear that more work is required to reduce the time of the 
whole process. In the improvement to come, the focus will be put on the 
replacement, during the evaluation process, of the finite element simulation by a 
neural network, trained with the results generated during the first generations.  
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