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Abstract 

The selection of forward-looking evolution philosophies for the dynamic 
optimization of slender shell structures subject to load impact is handled. The 
wave mechanics in identification outlook is applied to numerical analysis of the 
problem.  
     Employing the force method of analysis and provisionally neglecting the 
implicit compatibility conditions, an approximate explicit problem is presented. 
After solving this problem a lower limit of the optimum is effectively obtained. 
To assess the real optimum of the implicit problem, the compatibility conditions 
are taken into account for the final geometry. Several approximation concepts are 
proposed for the effective solution of the explicit fixed geometry problem. 
Linear programming models and approximate treatment of the displacement 
constraints are presented. The proposed algorithms do not involve multiple 
implicit analyses of the construction. 
Keywords:  constraint, dynamic optimization, large span construction, structural 
parameters, variable linking. 

1 Introduction 

In modern structural engineering, it is important to deal with some dynamic 
stresses of large span slender shells. Concurrently, the methods of identification 
and optimization are used, e.g. in compliance with Tesár [1] and Rechenberg [2]. 
By means of mathematical simulations worked out we can get well operating 
observes appraising the physical state inclusive of optimization of the shell 
structure by employing measurements at few points only. As a rule, several 
lower natural frequencies are studied. Along these lines, a smart real time 
monitoring can serves for the assessment of the maximum response of such shell 
systems subject to severe dynamic shocks. The response cannot be measured at 
every critical point for some parts of the construction may be not available or a 
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comprehensive instrumentation would be too costly. The control theory presents 
so called state observes that estimate the condition of a system by applying the 
measurements in combination with mathematical modelling of the roofs. 
Experimental, theoretical and numerical evaluations for identification and 
optimization of slender shell construction investigated have been lately made the 
focal point of intensive endeavours owing to insistent problems of disaster 
prevention of such structures. A sophisticated analysis of the shell systems is 
required so as to solve the problems being connected with the identification and 
optimization when subjected to the impacts. 
     The measured parameters are employed to better the simulation by 
modification of some structural parameters. The object of this paper is to 
identify, tune and optimize the stated models. A way to be in charge of the 
mentioned problems effectively is the adjustment of the wave techniques using 
modified mesh refinements and substructuring simulation procedures. In so 
doing, numerical techniques embrace the mesh modelled by moving elements. 

2 Structural optimization 

The demands for the application of the conceptions of the synthesis of structural 
geometry have become evident. For such structures the weight minimization or 
design of highly loaded construction are of extra significance. The synthesis of 
discrete approaches developed until now in structural mechanics has provided all 
necessary tools for efficient adoption of optimization procedures in the design 
and assessment of such structures.  
     Structural optimization is accepted as the selection of design parameters 
allowing the minimum weight or fully stressed design of structures. The 
selection of design parameters is subjected to the types of constraints, as follows: 
- geometric constraints – minimum and maximum areas, dimensions and 

stiffnesses of the shell structural elements selected,  
- stress c. – maximum allowable stress,  
- displacement c. – minimum and maximum deformations, rotations and 

displacements,  
- stability, fatigue and resonance constraints. 
Such entries characterize the regional constraints and are applied for all load 
conditions possibly appearing. They are represented by constraint hypersurfaces. 
Stress and deformations as well as the resonance, stability and fatigue limits are, 
in general, the nonlinear functions of the design variables adopted. Likewise, the 
constraint hypersurfaces are the nonlinear functions of such variables. When the 
design point is located in the area above the constraint surfaces, the characteristic 
stress or displacements in the regional constraints will lie within the specified 
limits. The point where the constant-weight hypersurface touches the constraint 
hypersurfaces adopted is the point for the minimum weight design e.g. of bionics 
shell configurations investigated.  
     When constraints are imposed only on the stress, an iterative procedure is 
used to redesign the shell structure so that each element reaches limiting stress 
under at least one of the load conditions assumed during aimed snow slip 
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loading. Such design is described as a fully stressed design. The design variables 
for fully stressed design converge to a vertex of n hypersurfaces representing the 
n constraints on the stresses.  
     The total amount of design variables, particularly in large shell roof 
structures, is often numerous. In many synthesis methods the solution efficiency 
is highly dependent on the number of variables optimized simultaneously. It is 
desired to reduce this number. While the optimal design is usually improved by 
considering geometric variables, the objective functions of minimum-weight or 
fully stressed designs are frequently not responsive to variations in these 
variables in the proximity of the optimum.  
     Generally, it is possible to express the optimization problem in the following 
way: Determine the geometric design variables Y and the cross-sectional design 
variables X or Z (as other types of variables) such that during the snow slip their 
holds 
 
objective function W = f(X,Y,Z)→min, (1) 
geometric constraints  XL ≤ X ≤ XU, (2) 
 YL ≤ Y ≤ YU, (3) 
 ZL ≤ Z ≤ ZU, (4) 
stress constraints σL ≤ σ ≤ σU, (5) 
displacement constraints  rL ≤ r ≤ rU, (6) 
resonance, stability and fatigue constraints γL ≤ γ ≤ γU, (7) 
 
where L und U denote superscripts indicating lower and upper limits, 
respectively. 
     The symbols σ, r and γ are the selected vectors of stress displacements and 
resonance, stability or fatigue limits. Such bounds represent implicit functions of 
the design variables.  
     The intent of the straightforward optimization method is to solve concurrently 
all the above variables by one of available nonlinear programming techniques. A 
possible two-level solution procedure for such optimization is given by the 
following steps: 
1. Suppose an initial structural geometry. 
2. Optimize cross-sectional variables and forces for given geometry by 

satisfying eqns. 1-7. 
3. Alter the geometric variables.  
4. Repeat the operations 2 and 3 until optimal structural geometry for 

dangerous snow slip loading is obtained.  
The quantity of design variables can be reduced by rendering all geometric 
dimensions via a small number of independent variables. The design variable 
link is often indispensable in view of such entries as functional requirements, 
production restrictions, boundary conditions, load parameters in the course of 
snow slip and so forth. Another possibility to reduce the number of candidate 
geometries is to use a coarse grid in the space of geometric variables, so that 
only a small number of X, Y or Z values is to be considered. This is justified in 
many cases, where the objective function (minimum weight design, fully 
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stressed design, etc.) is not sensitive to the changes in geometric variables nearby 
the optimum. For the purpose of optimizing the X, Y and Z variables at this step, 
the unconstrained minimization procedure is to be applied, e.g. in compliance 
with Kirsch [3]. 

3 Set geometrical problem 

When analyzing the approximate explicit problem by dint of the two-level 
concept, both the cross-sectional variables and the force distribution in the 
construction are optimized for any geometry. This pass that has to be repeated 
many times, for the most part embraces much computational endeavour and it is 
fundamental to utilize effective solution techniques.  
     One can assume that both the objective function Z and the matrix [C] are 
linear functions of {X} and taking into account only the stress and side 
constraints, we obtain the following linear programming problem (LPP): find 
{X} and {N} such that 

Z = {l}T{X}→min    (8) 
[X]{σL} ≤ {AL} + [AN]{N} ≤ [X]{σU}   (9) 

{XL} ≤ {X} ≤ {XU}    (10) 
 
where {l} is a vector of constant coefficients (members length, e.g.), and [X] is a 
diagonal matrix containing linear functions of the design variables on its 
principal diagonal. This statement is frequently employed in optimal plastic 
design of framed construction. The principal asset is that the LPP can be 
efficiently solved using standard computer programs. The assumption of linear 
dependence between Z, [C] and the cross-sectional design variables {X} is 
usually valid for truss structures. It is approximate for other types of framed 
structures such as beams and frames, however, it has been noted that the 
inaccuracy involved in this assumption is minor. A more serious drawback is that 
the displacement constraints are not considered in the linear programming 
solution. Some simplifications serve to include the latter constraints in the LPP 
formulation. 

3.1 Lagrange multipliers  

One method is to analyze first the LPP and later to control if the displacement 
constraints are satisfied. If a certain constraint Dj ≤ Dj

U is violated, we may 
calculate optimal values of Xi(i = 1,….,n) for which 
 

Dj ≤ Dj
U.      (11) 

Inserting the expression for the displacements from the general formulation into 
eqn (11), the problem to be solved is: find {X} such that 
 

min
1

→=∑
=

i

n

i
i XlZ      (12) 
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Defining the Lagrangian function 
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the conditions that must be satisfied at the optimum are 
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Solving for λ and Xh yields 
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The demanded values of Xh may be computed for all displacement constraints 
and the largest value of each design variable (considering both the displacement 
constraints and the values obtained by the LLP solution) is selected for the final 
design. In this procedure the internal forces (and therefore the elements Bji) 
obtained from the LPP solution are assumed to be constant. In this way, the final 
design is only an approximation to the optimum of the fixed geometrical 
problem when its precision is dependent on the elements Bij. 

3.2 Functions of linearized displacements 

Furthermore, it is possible to linearize the displacement dependences. A first 
order expansion of the Taylor series about the solution point of the LPP, 

{ }*
*

, NX






  gives 

U
jkk

m

k k

j
ii

n

i i

j
jj DNN

N
D

XX
X
D

DD ≤





 −

∂

∂
+






 −

∂

∂
+=

∗

=

∗
∗

=

∗
∗

∑∑
11

 (19) 

Computer Aided Optimum Design in Engineering X  81

 © 2007 WIT PressWIT Transactions on The Built Environment, Vol 91,
 www.witpress.com, ISSN 1743-3509 (on-line) 



where m denotes the number of redundant forces (~ statical indeterminacy 
degree). For determination of the displacement derivatives, it can be noted that 
the internal forces {A} are linear functions of {N} (eqn …). Also, a statically 
equivalent internal force system corresponding to the virtual external load Qi 
may be selected so that the forces Q

jiA  are fixed. In this way, the displacement Di 
may be rendered in the form 
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where bji0 and bjik are constants. After differentiating with regard to Xh and Nf, 
respectively, we get 
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Adding the linearized displacement constraints to the LPP, we can tackle an 
amplified LP problem. The steps of linearization and solution of the modified LP 
problem may be repeated until reaching convergence. 
     In the present formulation both {X} and {N} are used as independent 
variables. It is interesting to note that eqn (21) is also valid if the compatibility 
conditions are taken into account (i.e. Nk depend on Xi) because 0/ ≡∂∂ iji XB . 

3.3 Adopting the virtual-load system 

The internal-force system relevant to the virtual external load Qi is required to be 
statically equivalent to Qj only. In a statically indeterminate structure, the forces 

Q
jiA  are not unique and various choices exist for the statically equivalent system. 

Selecting, for example, the system indicated in fig. 1 (with hinges supposed at 
intermediate supports), the displacement term of eqn (20) comes down to  
 

h

hjhhhhjhjh
j X

NbNbb
D

++
= −− 11,0     (23) 

 
in which h indicates the member on which the virtual load Qj is applied, and Nh-1, 
Nh are bending moments over the supports of the hth member. Inserting this 
equation into the displacement constraint Dj ≤ Dj

U and rearranging, the linear 
form will be gained 
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.011,0 ≤−++ −− h
U
jhjhhhhjhjh XDNbNbb    (24) 

 
That means, any displacement constraint of a continuous beam can be expressed 
as a linear function of three variables and added to the LPP. 
 

 

Figure 1: Continuous beam system. 

 

Figure 2: Multi-story frame. 

     Applying a similar procedure for the frame demonstrated in fig. 2(a) and 
adopting the equivalent system of fig. 2(b), the vertical displacement constraints 
(such as D1 ≤ D1

U or D2 ≤ D2
U) can be expressed in the linear form of eqn (24). 

To obtain a linear horizontal displacement constraint (D3 ≤ D3
U), it is necessary 

to suppose a linear relationship between the design variables of the middle 
column (fig. 2(b), only bending deformations are considered) 

 
.4,3,2== iXαX iii     (25) 
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The value of the coefficients αi can be selected by virtue of the stress constraints. 
(The αi can be derived, for example, from the LPP solution; subsequently, the 
linearized displacement constraint is added to the LPP and we get a revised 
solution. 

3.4 Example: statically determinated six-member lattice (fig. 3) 

Given quantities: the allowable stresses are {σu} = -{σL} = 150 MPa, the 
elasticity modulus E = 2.1·105 MPa, and the objective function Z means the 
volume of material. 
 

 
Figure 3: Six-member lattice. 

     The lattice is subject to a single horizontal load and the bar areas are selected 
being cross sectional design variables, with no side constraints described. The 
single variable Y is subjected to the side constraints 

3 ≤ Y ≤ 10 
Two occurrences are analyzed to exemplify the sensitivity of Z to alterations in 
Y. 
Instance A The characteristic constraints are applied to stresses only 
Instance B The displacements constraint 

D1 ≤ 0.33 
is regarded as an additional demand (D1 represents the horizontal displacement at 
the top of the lattice). 
     Modification of min Z with Y for both instances is demonstrated in fig. 4. 
While large changes in Y result in considerable variations of min Z, it can be 
observed that the objective function is relatively not sensitive to changes in the 
geometric variable near the optimum. That is, a coarse grid of points (say, a 
minimum step size of 1.0 m) could be assumed for Y. 
     As no redundant forces are included, there is no need to take into account the 
compatibility conditions, the problem statement is precision. 
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Figure 4: Variation of min Z with Y. 

4 Conclusion 

The evolution concepts and their choice in the optimization techniques of shell 
construction are pointed out. For effective optimization, the evolution strategy 
proved to be a competent means 
     To provide an efficacious tool for purposeful synthesis of structural geometry, 
it is appropriate to put together multilevel solution and approximation strategies. 
The multilevel statement combines simplified sub-optimization for member 
dimensions, reduction in the number of design variables optimized 
simultaneously, and improved convergence properties of the design problem. 
Disregarding provisionally the compatibility conditions, the AEP formulation is 
obtained. The latter qualifications do not appreciably influence the optimal 
geometry in a variety of construction, they are usually taken into account only 
for the final geometry obtained by the AEP solution. The AEP simulation yields 
a lower limit of the optimum and does not embrace multiple explicit analyses. In 
the given case, a single analysis is adequate to assess the final optimum. To 
improve the method of solution, the number of independent variables can be 
reduced by means of variable linking. 
     The phase of optimization of cross section for a fixed geometry uses plenty of 
the computational funds up, accordingly, it is fundamental to employ effective 
approaches at this period. 
     The interpretations stated simplify the method of geometric optimization. 
     According to paper [1], theoretical and numerical procedures for the subject 
matter of shell roofs were applied to one bionics roof construction made of 
laminated wood, erected in the town Brezno, Slovakia. 
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