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Abstract 

Shape optimization of fibers based on the highest bearing capacity of composite 
aggregate on a unit cell is studied using Inverse variational principles. They have 
been applied mostly in connection with finite elements. It appears now that 
boundary elements are much more efficient. On the other hand, it is necessary to 
find an appropriate function, which describes boundary density of potential 
energy and at the same time variational bounds or homogenization of the 
composite have to be carried out. If one starts with homogenization, a 
mathematical formulation has to prove that a solution exists and is unique. The 
latter problem seems not to be as simple as it first seems. Additional constraints 
must be introduced to ensure the uniqueness of the solution. If bounds are 
sought, we start with extended Hashin–Shtrikman principles. A study is carried 
out for different relations of fibers and matrices.     
Keynotes:  optimization, Inverse variational principles, classical composites.  

1 Introduction 

Conventionally, the optimal shape design problem consists of minimizing an 
appropriate cost functional with certain constraints, such as equilibrium and 
compatibility conditions and design requirements. The formulation of the cost 
function depends on the concrete intention of a designer. One of a reasonable and 
practical form of the cost function concerns the minimization of the strain energy 
of the body subjected to a specific load. Such a problem can easily be formulated 
in terms of inverse variational principles, which assure that the surface energy 
attains its minimum. 
     The inverse variational principles are naturally connected with the finite 
element method, which starts with energetical formulation. But, the FEM is less 
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suitable for the problems involving the optimal shape of boundary because of the 
division (in any case compulsory when using the FEM) of the domain, while the 
boundary element method seems to be more suitable for such problems as it does 
not require domain meshing. On the other hand, the direct connection of the 
BEM with the variational principles is not seen at first sight and desires a deeper 
study. 
     Inverse variational principles, leading to the optimization of surface energy of 
bodies, were established by Prof. Bufler from Darmstadt University, Germany, at 
the end of the 1960s. Later on, they were developed by some authors, but 
published mostly at local, although including some international, conferences. 
An interesting application of the inverse variational principles is issued in [1, 2], 
where numerical experience is discussed. The results from these discussions are 
used in our paper. Numerical tools for solving the problems in terms of the 
inverse variational principles are finite elements. General formulation of the 
inverse variational principles is presented in [3] for elastic media. 
     Paper [4] is focused on optimization problems based on the inverse 
variational principles solved by boundary elements. This approach is 
extraordinarily advantageous, as no internal mesh has to be generated (the results 
are strongly dependant on the topology of the mesh), but a new variational 
principle has to be formulated, namely the internal energy is expressed using the 
integral relations following from the boundary element method. 
     Since we are concerned with the optimization of composite structures using 
homogenization, the theory for periodic media given by Suquet, [5], is utilized in 
this paper. Similarly to Suquet´s examples symmetric problems are considered.  
     Advantages of the boundary element method in solving shape optimization or 
moving boundary problems were mentioned, when paper [4] were discussed. For 
the same reasons this numerical method is also used here for generating iterative 
stages being solved in each step of iteration. We formulate the problem in each 
step starting with the idea of Hashin–Shtrikman variational principles, [6], which 
were worked out into integral form in [7], where basic considerations are given 
and developed in this paper.  
     First, the optimization problem is formulated in this paper, and a solution of it 
is suggested and discussed from the point of solvability and uniqueness. Then 
homogenization and localization, of principle importance in the approach 
introduced in this paper, are briefly discussed using the boundary element 
method. The main goal is the computation of concentration factors, which can be 
received from localization on a unit cell and applied to homogenization and 
energetic functional, which are important for obtaining the optimal shape design 
of fibers.  

2 Basic considerations 

Before coming up to the optimization problem recall some basic consumption 
which we will use later in the optimization formulation. First, we denote 
quantities used in this text. Two different scales will naturally be introduced. The 
macroscopic scale, the homogeneous law in which is sought, will be described in 
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coordinate system T
321 },,{ xxx≡x  and the microscopic scale – heterogeneous – 

is characterized in the system of coordinates T
321 },,{ yyy≡y . The medium is 

generally heterogeneous, but locally – in the microscopic scale – is assumed to 
be periodic, and thus a representative volume element may be cut out from the 
structure and the periodicity conditions can be introduced on the boundary of this 
element. The idea is illustrated in Fig. 1. 
     Let us distinguish the quantities under study in dependence of the 
macroscopic or microscopic scale in the following manner: The displacements in 
the macroscopic level will be denoted as T

321 },,{ UUU≡U  while in the 

microscopic level as T
321 },,{ uuu≡u . Moreover, in macroscopic level, let us 

denote strains as }{ ijE≡E , i, j = 1,2,3 and stresses as }{ ijS≡S , i, j = 1,2,3. In 
the microscopic level let us denote strains as }{ ijε≡ε , i, j = 1,2,3 and stress as 

}{ ijσ≡σ , i, j = 1,2,3. Define also the microscopic-macroscopic relation of the 
averaged stresses and strains by  
 

∫ >=<=
Ω

σΩσ
Ω ijijijS d 

meas
1 ,        ∫ >=<=

Ω

εΩε
Ω ijijijE d 

meas
1          (1) 

 
where < . > stands for the average, Ω  is the representative volume element, and 
meas Ω is its volume, mf ΩΩΩ ∪= , 0mf =∩ΩΩ , fΩ denotes the domain of 
fiber and mΩ is the domain of matrix. As usual, Ω meas is set to unity. Note that 
average usually means homogenization, but one should use that term with care as 
there are many kinds of averaging.  
 The elasticity system (equilibrium equations, kinematical conditions and 
Hooke’s law) is defined as (small deformation theory is imposed): 
 

)(
2
1      ),(:)()(     ,0)( div T uuεyεyLyσyσ ∇+∇===       in  Ω         (2) 

 
and periodic boundary conditions along the boundary of the unit cell Ω∂ are 
imposed.      
     Tensor )(uε is split into its average E and a fluctuating term )(uε as: 

 
     0)(      ),()(     , )()( **** >=<=+= uεuεuεuεEuε      (3)                           

 
Components *

iu  are the same at opposite sides. Hence, the fluctuating 

displacement *u  may be considered a periodic field, up to a rigid displacement 
that will be disregarded. The geometry and denotation is obvious from Fig. 2 for 
the 2D case. The interfacial surface between fiber and matrix is denoted by Γ . 
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Figure 1: Macro-microstructure of a composite. 

 

Figure 2: Unit cell used in the study. 

3 Formulation of shape optimization 

A natural problem for engineers dealing with composites could be to determine 
such a shape of fibers that the boundary energy of the fibers embedded into a 
matrix is as close as possible to a uniform distribution or the bearing capacity of 
the entire composite structure increases and attains its maximum on a set of 
admissible domains. This is a problem of optimal shape of structures and can be 
formulated for composites as follows. Let the uniform strain fields ijE  be 
applied to the domain of the unit cell Ω (in our case, a periodic distribution of 
fibers is considered and the domain of the unit cell is assumed to be of a constant 
shape and its position is also fixed). This produces concentration factors f

ijklA and 
m
ijklA , obeying  
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     Let (),(( mmff ΩΩΠ AA f f m mΩ Ω
mf ΩΩΩ −=

class O  of admissible fiber domains, which minimizes Π
equations (2). This may symbolically be written as 
 

Min  { (),(( mmff ΩΩΠ AA
conditions}                 (5) 

 
     Since there is no external loading in our solution for concentration factors, 
(the load is due to unit impulses of strain tensor or, equivalently, of prescribed 
displacements), one of a practical requirements of designers is an assumption of 
minimum strain energy of a structure subject to the above mentioned load 
distribution. Such a problem may be formulated in terms of inverse variational 
principles. In order to ensure the correctness of this formulation, additional 
constraints have to be applied. In our case, we assume the constant volume of 
fibers. But, it appears that this is not sufficient condition for solvability of the 
problem, as shown in Appendix of [4], where an example describes obvious 
divergence of iterative process for solving the optima shape of a clamped beam 
(stretched plate). 
     Hence, the admissible set is defined as 
 

}dist ;  meas  ;{ 21   CCO === ΩΩΩ                              (6) 
 
where   },,;),({maxdist 2121 ρΩΩρΩ ∈∈= ξξξξ denotes the Euclidean distance, 

21,CC are (reasonably) chosen constants. 
     It remains to describe the interfacial boundary Γ in dependence on internal 
(design) parameters. In our considerations we restrict our problem to two 
dimensions, the generalization to three dimensions is straightforward, and 
description of the meaning of certain variables is more complicated. Moreover, 
the shape of the fiber symmetric with respect to the coordinate system and the 
fiber is always star-shaped, i.e. there is a point (the origin of the coordinate 
system) for which it holds that abscissas connecting each point inside the closure 
of fΩ fully lies inside the fiber domain (there is no point in this abscissas outside 
the closure of fΩ ). Note that this restriction is not significant. How to handle a 
general case of positions of the fibers is described in [4]. Let p be a set (vector) 
of radii from origin to the boundary Γ . Then the approximate shape of this 
boundary can be described as polygon, its vertices are nodal points or 
intersections of the radii and the boundary. Hence, the set 

nppp n},,...,,{ 21=p is the number of nodal points can be considered as set of 
design parameters (each }{1,2,...,, nipi ∈  is a design parameter). Note that 
polygonal description can be generalized to higher order polynomial description 
of Γ and the approximation of the interfacial boundary are shape functions 
similar to that from finite or boundary elements (speaking about the shape). 
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from a optimal shape problem consists of finding such a domain
on the set of elasticity 

)) ; eqs. (2) are fulfilled together 
with the boundary 



From these considerations we see that the movement of the boundary is 
controlled by the value of design parameters. 
     The problem can now be formulated as follows: Find stationary point of the 
functional Π (minimum with respect to the field u and maximum with respect 
to λ ) on the admissible set O  of the fiber domains. The cost functional can then 
be written in the form of lagrangian principle with constraint as: 
 

∫∫ −−=
f

)()()(
2
1),( f

ΩΩ

ΩλΩεσΩΠ Cddijij yyu                     (7) 

 

4 Solution of optimal shape of fibers embedded in matrix 

In this section adjustment of the above defined problem is put forward, taking 
into account special nature of composite structures. In the previous sections 
formulated relations are considered and in the sense of this reformulation of the 
functional can be carried out. Under the above circumstances Hill’s energy 
condition holds valid, as proved, e.g., by Suquet [5]: 
 

ijijijij ES>=< )()( yy εσ                                           (8) 
 

     The cost functional can then be rearranged as: 
 

=−− ∫∫
f
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     Using (1), (22) and (4) the components of the overall stresses are written as: 
 

αβαβαβεσ EALALLS klijklklijklklijklijij ))()(()()()( m
mm

f
ff ><+><>=>=<=< yyyyy  

      (10) 
 
where f. ><  stands for average on fiber and m. >< is the average on matrix. 
This averaging process is made in such a way that the integrals are taken over 
fiber and matrix, respectively, but the denominator generally remains Ω meas , 
see (1). 
     By definition, the homogenized stiffness matrix *L  becomes: 
 

klijklij ELS *=                                                (11) 
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Comparing (10) and (11) the overall stiffness matrix follows as 
 

m
mm

f
ff* )()( ><+>=< yy αβαβ klijklklijklijkl ALALL                     (12) 

 
     It is worth noting that the homogenized stiffness matrix is symmetric with 
similar properties as that of the classical stiffness matrix in the problem defined 
in the microscale. 
     Substituting (11) and (12) to (10) provides 
 

∫ −−><+><=
f

)(])()([
2
1),( m

mm
f

fff

Ω
αβαβαβ ΩλΩΠ CdEEpALpAL ijsklijklsklijklu  

(13) 
 
and only the concentration factors are dependant of the values of ps , s = 1,2,…,n. 
     Since the problem remains linear elastic, superposition of loadings due to 
successively given by components of the overall strain tensor can be used. 
Without lack of generality, let us consider a symmetric unit cell depicted in     
Fig. 2, for example. The overall strain ijE  is assumed to be given independently 
of the shape of the unit cell and of the shape of the fiber. The loading of this unit 
cell will be given by unit impulses of ijE , i.e. we successively select 

 ;1
0000
== ijji EE ijE  for either ii ≠0  or jj ≠0 .  

     It remains to specify the domain fΩ  by means of its corresponding 
boundary. This can be done in many ways. As described before, suppose the 
polygonal shape of the fiber under study. One can choose some fixed point (a 
pole – in our case this is the origin) and connect it with each vertex of this 
polygonal boundary, the distance of the i-th vertex from the origin of the 
coordinate system is denoted as pi. In this way we obtain n triangles Ts, s = 
1,...,n. It obviously holds: 
 

=∫
f

d
Ω

Ω meas fΩ =∑
=

n

s 1
meas Ts .                              (14) 

5 Euler’s equations 

The stationary requirement leads to differentiation of the functional by the shape 
(design) parameters sp  
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which can be rewritten as:  
 

nsEs ,...,2,1     ,0 ==+ λ                                       (16) 
where  
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If we have claimed ps, s = 1,...,n  the distances of the origin from the current 
boundary of the fiber, Es corresponds to the strain energy density at the point of 
the interfacial boundary, in our case at the nodal point sξ . The equation (16) 
requires Es to have the same value for any s. In other words, if the strain energy 
density were the same at any point on the ‘moving’ part of the boundary, the 
optimal shape of the trial body would be reached. For this reason the body of the 
structure should increase its area (in 3D its volume) at the nodal point sξ  of the 
boundary, if Es is larger than the true value of λ− , while it should decrease its 
value when Es is smaller than the correct λ− . As, most probably, we will not 
know the real value λ−  in advance, we estimate it from the average of the 
current values at the nodal points. 
     Since Es, prove large differences in their values, logarithmic scale was 
proposed by Tada et al [2]. The computational procedure follows this idea. 
  Differentiation by λ  completes the system of Euler’s equations: 
 

∑
=

n

s 1
meas Ts = C                                             (17) 

6 Example 

Unit cell is considered with fiber volume ratio equal to 0.6. Since we compare 
energy densities at nodal points of the interfacial boundary, the relative energy 
density may be regarded as the comparative quantity influencing the movement 
of the boundary Γ . As said in the previous section, the higher value of this 
energy, the larger movement of the nodal point of Γ  should aim at the optimum. 
     In both cases of volume ratios we used the following material properties of 
phases: Young’s modulus of fiber Ef = 210 MPa, Poisson’s ratio fν  = 0.16; on 
the matrix Em = 17 MPa, and mν  = 0.3. 
     We started with the radius r = 0.714 of a circle and ‘unit moves’ of the 
parameters sp  where given by the change of radius by 2.2%.  
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     In Fig. 3 the distribution of relative energies sE  is depicted along the 
interfacial boundary and the optimal shape of the fiber is drawn. These results 
are obtained using boundary elements, [7], and are in accordance with results 
gained from the FEM.  
 

 
Figure 3: Relative energy in the first step and optimal shape. 

7 Conclusions 

In this paper the inverse variational principle has been applied to the solution of 
optimal fiber shape design on a unit cell of periodic composite structure. When 
searching for optimal shape design of fibers in composite structures, many 
formulations have been used in the past. They very often start with minimum 
strain energy function. This assumption is in inverse variational principles 
fulfilled implicitly. A natural requirement is the restriction to the constant 
volume or area in many methods of solution of optimal shape design of 
composites, say, when solving a periodic distribution of fibers. 
     The requirement of the constant volume or area seams to be restrictive, 
particularly when expecting application of inverse variational principles to larger 
range of problems. Actually, it is not so. The constant C may change, too. Thus 
the formulation has to be extended in such a way that C is involved into the 
problem as a new variable and may be variated (differentiated) in some 
reasonable way. It is necessary to point out that the extreme of the functional 
Π is found as neither the minimum nor the maximum, but the functional should 
be minimum with respect to the displacements and maximum with respect to the 
lagrangian multiplier λ . 
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