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Abstract

The present study investigates the formulation and use of solid-shell finite element
models which are able to model thin and thick, isotropic and multilayered
composite structures using a purely 3D formulation based only on displacement
dof. The second part of the paper deals with the optimization of composite
structures, using a specific response surface method. This technique has been
shown to be more efficient than classical gradient based methods. Several
applications combining our solid-shell finite element model and the specific
response surface method are shown in order to assess current procedure
capabilities.

1 Introduction

Solid-shell elements have many advantages compared to the degenerated shell
models, because of their kinematic simplicity, their ability in modeling industrial
structures generally composed of bulk and thin-walled regions and also special
rotations treatment in geometric nonlinear analysis can be avoided. Unfortunately,
the formulation of valid solid-shell elements is more complicated than the one
used for degenerated shell elements since solid-shell elements are bothered by
membrane, shear, trapezoidal and thickness lockings [2, 3].

During last five years, Response Surface Methods (RSM) have gained more and
more importance in the optimization of general shell structures [5]. RSM has the
advantage of replacing a complex response model by an approximate one based
on results calculated at various points in the design space. The optimization is
then performed at a lower cost over such response surfaces. Two important issues
when applying RSM to a particular problem concern the design of experiments
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and construction of accurate function approximations so that rapid convergence
may be achieved. In the present work, we exploit the RSM based on Diffuse
approximation (DA) and particularly the notion of pseudo-derivative to design a
specific optimization technique, custom built for this regression model. This new
method is an extension of pattern search in two aspects: (1) accommodation of
arbitrary regular and irregular patterns; (2) design points eligible for inclusion
in any pattern instance belong to a predefined set in the design space where
experiments are authorized.

In the final section of the paper, we present numerical applications combining
a solid-shell finite element models for the modeling of Multilayered composite
structures with our response surface method.

2 FE formulation of the eight-node hexahedron

2.1 Kinematics of solid-shell models

In this section, the formulation of the eight-node solid-shell element is briefly
recalled. With respect to nodal designation (Figure 1), the coordinate vector X
and displacement vector Uq of the element are

Xq = X0 (ξ, η) + ζXn (ξ, η) =
4∑

i=1

Ni (ξ, η)
(

1 − ζ

2
X−

i +
1 + ζ

2
X+

i

)
(1)

Uq = U0 (ξ, η) + ζUn (ξ, η) =
4∑

i=1

Ni (ξ, η)
(

1 − ζ

2
U−

i +
1 + ζ

2
U+

i

)
(2)

where Ni are the two-dimensional eight-node Lagrangian interpolation functions,
X−

i , U−
i and X+

i , U+
i are respectively, the coordinate and displacement vectors

of the ith node on the bottom and top shell surfaces (Figure 1).

Figure 1: Eight-node solid-shell ele-
ment.

Figure 2: Fiber-reinforced lamina ori-
entation axes.
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The infinitesimal covariant element strains with respect to the parametric
coordinates are

εξξ = XT
,ξ U,ξ; εηη = XT

,η U,η; γξη = XT
,ξ U,η + XT

,η U,ξ (3)

εζζ = XT
,ζ U,ζ ; γξζ = XT

,ξ U,ζ + XT
,ζ U,ξ; γηζ = XT

,η U,ζ + XT
,ζ U,η (4)

2.2 Material law in convected basis

The constitutive relation of laminated composites can be described by using an
orthotropic material law. For that purpose, we express the components of the
tangent elastic moduli tensor relative to the fiber reference axis {a1; a2; a3} of
a lamina.

C =




C1111 C1112 0 C1113 0 0
C1122 C2222 0 C2223 0 0

0 0 C1212 0 0 0
C1133 C2233 0 C3333 0 0

0 0 0 0 C1313 0
0 0 0 0 0 C2323




(5)

where the components Cijkl take the following expressions: C1111 = E1(1 −
υ23υ32)/K, C1122 = E1(υ21 + υ23)/K, C2222 = E2(1 − υ13υ31)/K, C1113 =
E1(υ31+υ21υ32)/K, C2223 = E2(υ32+υ12υ31)/K, C3333 = E3(1−υ12υ21)/K,
C1212 = G12, C

1313 = G13, C
2323 = G23, K = 1−υ12υ21−υ13υ31, −υ23υ32−

2υ12υ23υ31. νijEj = νjiEi, for (i, j = 1, 2, 3 with i �= j) and E1, E2, E3 are the
Young’s moduli in the principal material directions {a1; a2; a3}, respectively, and
νij and Gij the Poisson’s ratio and the shear modulus respectively.

Since matrix C is associated with the principal material directions, we need to
transform it from the lamina coordinate axes {a1; a2; a3} to the global Cartesian
coordinate axes {e1; e2; e3}. With θ being the fiber orientation angle relative to
the global Cartesian system (see Figure 2), the relationship between the lamina
coordinate system and the global Cartesian coordinate system is given by

a1 = cos θ e1 + sin θ e2, a2 = − sin θ e1 + cos θ e2, a3 = e3 (6)

The final constitutive tensor C can be expressed in the convective coordinates
as

C̃ = TT
G C TG (7)

2.3 Principal of virtual work and stiffness matrix calculation

In order to deal with the several lockings separately, we need to separate
the expression of virtual internal work by uncoupling the membrane/bending,
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thickness and transverse shear [1, 2].

Wint = Wmf
int + W ez

int + W c
int (8)

Wmf
int =

∫
V

δεs
T C̃1εsdv = δun

T Kmfun; Kmf =
∫
v

BT
mf C̃1Bmfdv (9)

W ez
int =

∫
V

δεz
T C̃2 εz dv = δun

T Kez un; Kez =
∫
v

BT
z C̃2 Bz dv (10)

W c
int =

∫
V

δγs
T C̃3 γs dv = δun

T Kc un; Kc =
∫
v

BT
c C̃3 Bc dv (11)

and εs
T =< εxx εyy γxy >, εz

T =< εxx εyy εzz >, γs
T =< γxz γyz >

A solid-shell element formulated using equations (9), (10), (11) with standard
integration based on a 2 × 2 × 2 Gauss schema will fail because of numerous
locking phenomena.

2.3.1 Remedies for shear locking
An effective method of resolving shear locking is the Assumed Natural Strain
method in which the natural transverse shear strains are sampled and then
interpolated at some discrete element points. The transverse shear strains γξζ and
γηζ are calculated according to the average surface plan (ζ=0), assuming that they
vary linearly, and are function of γξ and γη at the mid-side points:

γANS
ξζ =

1 − η

2
γA1

ξ +
1 + η

2
γA2

ξ ; γANS
ηζ =

1 − ξ

2
γB1

η +
1 + ξ

2
γB2

η (12)

2.3.2 Remedies for thickness and trapezoidal lockings
Similar to shear locking, trapezoidal locking occurs when lower order elements
such as eight-node hexahedral elements are used to model curved shells so
that their cross-sections assume the trapezoidal shape these excessive number of
sampled thickness strains can be reduced by using a bilinear interpolation of the
transverse normal strains sampled at the four corners of the element mid-surface,
namely

εANS
z =

4∑
i=1

Ni (ξ, η) εz (ξi, ηi) (13)

Poisson’s ratio coupling requires the thickness strain to be a linear function of ζ.
Because our solid-shell element has only two layers, as consequence the thickness
strain does not vary with ζ thus the element fail in reproducing the plane-stress
condition. In order to obtain a linear distribution of the normal strain in thickness
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direction, we enhance the thickness strain field by adding an internal degree of
freedom

ε̃ANS
z = εANS

z + α ζe3 (14)

where α represents the 7th independent internal parameter in the element level
which will be eliminated by special condensation technique. Using (12) and (14)
into (8), the virtual internal work takes the final expression

Wint =
nl∑

i=1

∫

ξ

∫
η

ζi+1∫

ζi

(
δεs

T C̃1εs + δε̃ANS
z

T
C̃2ε̃ANS

z + δγANS
s

T
C̃3γANS

s

)
Jdξdηdζ

(15)

where nl is the number of layers and ζi is the transverse reference coordinate of
the ith layer along the cross-section of the element. The final stiffness matrix can
be obtained after condensation technique to eliminate the internal parameter α by:

K = Kmf + KANS
ez + KANS

c − β Kαu ⊗ KT
αu (16)

Kαu =
nl∑

i=1

∫

ξ

∫
η

ζi+1∫

ζi

ζC̃33
2 BT

z e3Jdξdηdζ ;
1

β
=

nl∑
i=1

∫

ξ

∫
η

ζi+1∫

ζi

ζ2C̃33
2 Jdξdηdζ

3 Optimization using RSM based on diffuse approximation

The optimization problem can be stated as:

minimize f(x), x ∈ Rn (17)

subject to a set of m + 2n constraints

gj(x) ≤ 0, j = 1, . . . , m

Li ≤ xi ≤ Ui, i = 1, . . . , n
(18)

where f is the objective function, xi are the design variables, gj is the jth

constraint. The region of interest is defined by Li and Ui which are respectively
the lower and upper bounds on the design variables. The RSM approach consists in
solving a problem where the objective function is replaced by its approximationf̃.
This new problem may be written as{

minimize f̃(x), x ∈ Rn

subject to (18).
(19)

The approximation (19) is based on a set of numerical experiments with the
function f . In the actual work, we explore the application of DA for the building
of response surface during successive iterations. The approximation is local, what
means that only the points closest to the current optimum are taken into account.
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The approximation coefficients are continuous when panning and/or zooming of
the region of interest is performed.

Given the function values for a set of experimental points xi distributed
according to a chosen Design of Experiment, the function f̃ can be defined in
terms of basis functions p and some adjusting coefficients a as

f̃(x) = pT (x) · a(x) (20)

A common choice for the basis functions p are linear and quadratic monomials

p(x) =< 1 x1 . . . xn x1x2 . . . xixi+1 . . .
x2

1

2
. . .

x2
n

2
>T (21)

The coefficients of a are determined by a weighted least squares method
minimizing the error J(a) between the experimental and approximated values of
the objective function

J(a) =
N∑

i=1

w (‖xi − x‖) (
pT (xi − x) a− f(xi)

)2
(22)

where N is the number of performed experiments and xi are the experimental
designs. The weights wi insure the continuity and the locality of the approximation
and are defined wi > 0, decreasing within a fixed region around the point i called
domain of influence of xi and vanish outside. The weight functions play a crucial
role by influencing the way that the coefficients a depend on the location of the
design point x. Minimization of J(a) gives

a(x) = A−1 B f (23)

A = PWPT

B = PW
(24)

Vector a may be interpreted as coefficients of Taylor expansion of f around
the evaluation point x. In this sense, a correspond to the approximation of
subsequent derivatives – we use the term of “diffuse derivative” and the symbol
δ to differentiate from the “full” derivative ∂

a(x) =< f̃
δf

δx1

δf

δx2
. . .

δf

δxn

δ2f

δx1δx2
. . .

δ2f

δxiδxi+1
. . .

δ2f

δx2
1

. . .
δ2f

δx2
n

>T

(25)

4 Optimization of a wrapped thick cylinder under pressure

4.1 Problem analysis

The structure is composed of an inner isotropic cylinder E = 210000MPa,
υ = 0.3 and an outer orthotropic circumferentially wound cylinder
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Figure 3: Geometry and loading. Figure 4: Central composite design.

with: E11 = 130000MPa, E22 = E33 = 5000MPa, υ12 = υ13 = 0.25,
υ23 = 0, G12 = G13 = 10000MPa and G23 = 5000MPa. The boundary
conditions correspond to uz = 0 at z = 0 and the cylinder is subjected to an
internal pressure of 200MPa (Figure 3).

First the cylinder is modeled using the initial parameters and a 10 × 10 × 1
solid-shell mesh. The circumferential stress at z=0 is measured for two radius
values (r = 23mm, 27mm) and compared to the NAFEMS reference solution
[6] and to the one we obtained using SC8R ABAQUS solid-shell F.E. model.
For the inner flange we obtain σ11 = 1534.8MPa, the SC8R Abaqus gave
σ11 = 1477.0MPa, while the reference solution was 1565MPa. For the outer
flange we obtain σ11 = 892.8MPa, the Abaqus solution was σ11 = 900.0MPa,
while the reference solution was 875MPa. These results confirm that our model
and the used mesh are good enough to carry out the optimization process.

4.2 Optimization of material parameters

The optimization problem consists in finding optimal fibber orientation angle θ of
the outer orthotropic circumferentially wound layer and the Young’s modulus E
of the inner isotropic cylinder while keeping constant the cylinder expansion for
z = 0 at a value of UR = 0.5mm.

The objective function is based on the general Hill criterion as

J(θ, E) = J =
∑nelt

e=1

(
F (σ22 − σ33)2 + G (σ33 − σ11)2 + H (σ11 − σ22)2

+ 2L τ2
23 + 2M τ2

31 + 2N τ2
12

) (26)

Optimization variables are constrained between 0o ≤ θ ≤ 90o and 60GPa ≤ E ≤
300GPa. At the beginning a Design of Experiments of 9 function evaluations,
based on the central composite design algorithm is carried out using three groups
of design points (4 two-level factorial design points, 4 axial points and a 1 center
point). Then design variables are coded as (−1, +1) in order to facilitate the data
treatment. The DOE plan with the computed objective function values are given in
Table 1.

A global quadratic response surface model based on DA is built using previously
prepared experimental designs (see Figure 5). This response function is given
explicitly by:

J̃(θ, E) = 291900 + 4107.30 θ + 1842.52 E − 7520.69 θ E − 10230.38 θ2 − 261.44 E2

(27)
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Table 1: DOE plan using central composite.

Run θ E Response J Displ.

1 -1 -1 268316.8 0.355

2 1 -1 294069.1 0.833

3 -1 1 282546.0 0.150

4 1 1 293785.5 0.196

5 -1 0 278756.9 0.210

6 1 0 294282.9 0.316

7 0 -1 280609.1 0.584

8 0 1 286957.9 0.134

9 0 0 285223.1 0.211

Figure 5: Response surface of objective function.

The response approximation function for the constraint (U = 0.5) on the radial
displacement of the cylinder at z = 0 is also carried out using DA based on the
data of DOE from Table 1, this 2nd surface is represented on Figure 6 and given
explicitly by:

Ũ(θ, E) = 0.49 + 0.026 θ + 0.071 E + 0.13 θ E − 0.14 θ2 − 0.098 E2 (28)

The minimization of J̃(θ, E) under constraint Ũ(θ, E) = 0.5 (see Figure 7)
has been done using SQP algorithm based on the work of Powell, the optimal
solution was obtained in 5 iterations leading to a non symmetric result in coded
form 〈0.830, 0.961〉 which corresponds to

〈θoptimal, Eoptimal〉 = 〈82.34o, 295.40GPa〉 (29)
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Figure 6: Response surface of con-
straint function.

Figure 7: Optimal solution in contour
plot.

Figure 8: Hoop stress before optimiza-
tion.

Figure 9: Hoop stress after optimiza-
tion.

Figure 8 and Figure 9 show the hoop stress distribution on the cylinder before
and after optimization. We can observe just a small reduction of stresses after
optimization, this is due to the presence of constraint Ũ(θ, E) = 0.5 (Figure 7)
which can not lead to the minimum of the unconstrained objective function
J̃(θ, E).

5 Conclusion

In this paper, we proposed a specific response surface method based on DA
involving pattern search optimization. The resulting response surface algorithm
involve iterative improvement of the objective function employing locally
supported nonlinear approximations. Numerical examples confirm that the
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optimization method based on response surface and DA coupled to FE solid-shell
model is efficient and particularly suited for industrial problems.
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